A124720 Number of ternary Lyndon words of length n with exactly two 1's.
2, 5, 16, 38, 96, 220, 512, 1144, 2560, 5616, 12288, 26592, 57344, 122816, 262144, 556928, 1179648, 2490112, 5242880, 11009536, 23068672, 48233472, 100663296, 209713152, 436207616, 905965568, 1879048192, 3892305920, 8053063680, 16642981888, 34359738368
Offset: 3
Examples
a(4) = 5 because 1122, 1123, 1132, 1213, 1133 are all Lyndon words on 3 letters with 2 ones.
Links
- Colin Barker, Table of n, a(n) for n = 3..1000
- Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160. [From _R. J. Mathar_, Nov 08 2008]
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-8,8).
Programs
-
Mathematica
nn=30;Drop[CoefficientList[Series[(1/(1-2x)^2-1/(1-2x^2))/2,{x,0,nn}],x],1] (* Geoffrey Critzer, Feb 28 2013 *)
-
PARI
Vec(x^3*(2-3*x)/((1-2*x)^2*(1-2*x^2)) + O(x^40)) \\ Colin Barker, Oct 28 2016
Formula
G.f.: x^3*(2-3 x)/((1-2 x^2)(1- 2x)^2) = (x^2/(1-2x)^2 - x^2/(1-2*x^2))/2.
From Colin Barker, Oct 28 2016: (Start)
a(n) = 2^(n-3)*(n-1)-2^(n/2-2) for n even.
a(n) = 2^(n-3)*n-2^(n-3) for n odd.
a(n) = 4*a(n-1)-2*a(n-2)-8*a(n-3)+8*a(n-4) for n>6.
(End)
Comments