A124753 a(3n+k) = (k+1)*binomial(4n+k, n)/(3n+k+1), where k is n reduced mod 3.
1, 1, 1, 1, 2, 3, 4, 9, 15, 22, 52, 91, 140, 340, 612, 969, 2394, 4389, 7084, 17710, 32890, 53820, 135720, 254475, 420732, 1068012, 2017356, 3362260, 8579560, 16301164, 27343888, 70068713, 133767543, 225568798, 580034052, 1111731933, 1882933364, 4855986044, 9338434700
Offset: 0
Links
- J.-B. Priez and A. Virmaux, Non-commutative Frobenius characteristic of generalized parking functions: Application to enumeration, arXiv:1411.4161 [math.CO], 2014-2015.
Programs
-
Maple
A124753 := proc(n) local k,np; k := modp(n,3) ; np := floor(n/3) ; (k+1)*binomial(np+n,np)/(n+1) ; end proc: seq(A124753(n),n=0..40) ; # R. J. Mathar, Oct 30 2014
-
Mathematica
a[n_] := Module[{q, k}, {q, k} = QuotientRemainder[n, 3]; (k+1)*Binomial[4q + k, q]/(3q + k + 1)]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Nov 20 2017 *)
-
PARI
{a(n)=local(A=1+x); for(i=1,n,A=1+x*A*exp(sum(m=1,n\3,3*polcoeff(log(A+x*O(x^n)),3*m)*x^(3*m))+x*O(x^n))); polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
-
PARI
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r); a(n) = apr(n\3, 4, n%3+1); \\ Seiichi Manyama, Jul 20 2025
Formula
a(n) = ((mod(n,3)+1)*C(4*floor(n/3)+mod(n,3), floor(n/3))/ (3*floor(n/3) + 1 + mod(n, 3))). - Paul Barry, Dec 14 2006
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(w*x)*A(w^2*x), where w = exp(2*Pi*I/3). - Paul D. Hanna, Jun 04 2012
G.f. satisfies: A(x) = 1 + x*A(x)*G(x^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. - Paul D. Hanna, Jun 04 2012
Conjecture: +8019*n*(n-1)*(n+1)*a(n) +17496*n*(n-1)*(n-3)*a(n-1) +2592*(3*n-5)*(n-1)*(3*n-16)*a(n-2) +216*(-224*n^3+48*n^2+3926*n-6331)*a(n-3) +576*(-288*n^3+2448*n^2-6558*n+5443)*a(n-4) +768*(-288*n^3+3600*n^2-14878*n+20375)*a(n-5) -8192*(4*n-23)*(2*n-11)*(4*n-21)*a(n-6)=0. - R. J. Mathar, Oct 30 2014
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} a(3*k) * a(n-1-3*k). - Seiichi Manyama, Jul 07 2025
Comments