A124859 Multiplicative with p^e -> primorial(e), p prime and e > 0.
1, 2, 2, 6, 2, 4, 2, 30, 6, 4, 2, 12, 2, 4, 4, 210, 2, 12, 2, 12, 4, 4, 2, 60, 6, 4, 30, 12, 2, 8, 2, 2310, 4, 4, 4, 36, 2, 4, 4, 60, 2, 8, 2, 12, 12, 4, 2, 420, 6, 12, 4, 12, 2, 60, 4, 60, 4, 4, 2, 24, 2, 4, 12, 30030, 4, 8, 2, 12, 4, 8, 2, 180, 2, 4, 12, 12, 4, 8, 2, 420, 210, 4, 2, 24, 4, 4
Offset: 1
Examples
From _Michael De Vlieger_, Mar 06 2017: (Start) a(2) = 2 since 2 = 2^1, thus primorial p_1# = 2. a(4) = 6 since 4 = 2^2, thus primorial p_2# = 2*3 = 6. a(6) = 4 because 6 is squarefree with omega(6)=2, thus 2^2 = 4. a(8) = 30 since 8 = 2^3, thus primorial p_3# = 2*3*5 = 30. a(10) = 4 since 10 is squarefree with omega(10)=2, thus 2^2 = 4. a(12) = 12 since 12 = 2^1 * 3^2, thus primorials p_1# * p_2# = 2*6 = 12. (End)
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..5000 (first 1000 terms from R. Zumkeller)
- Eric Weisstein's World of Mathematics, Prime Factorization
- Eric Weisstein's World of Mathematics, Primorial
- Index entries for sequences computed from exponents in factorization of n
Crossrefs
Programs
-
Maple
A124859 := proc(n) local a,pf; a := 1; for pf in ifactors(n)[2] do a := a*A002110(pf[2]) ; end do: a ; end proc: seq(A124859(n),n=1..80) ; # R. J. Mathar, Oct 06 2017
-
Mathematica
Table[Which[n == 1, 1, SquareFreeQ@ n, 2^PrimeNu@ n, True, Times @@ Map[Times @@ Prime@ Range@ # &, #[[All, -1]]]] &@ FactorInteger@ n, {n, 86}] (* Michael De Vlieger, Mar 06 2017 *)
-
PARI
a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = prod(j=1, f[k,2], prime(j)); f[k,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 16 2015
-
Python
from sympy.ntheory.factor_ import core from sympy import factorint, primorial, primefactors from operator import mul def omega(n): return 0 if n==1 else len(primefactors(n)) def a(n): f=factorint(n) return n if n<3 else 2**omega(n) if core(n) == n else reduce(mul, [primorial(f[i]) for i in f]) # Indranil Ghosh, May 13 2017
-
Scheme
(define (A124859 n) (cond ((= 1 n) 1) (else (* (A002110 (A067029 n)) (A124859 (A028234 n)))))) ;; Antti Karttunen, Mar 06 2017
Formula
From Antti Karttunen, Mar 06 2017: (Start)
a(a(n)) = A046523(n). [after Matthew Vandermast's May 19 2012 formula for the latter sequence]
(End)
a(n) = A108951(A181819(n)). [Primorial inflation of the prime shadow of n] - Antti Karttunen, Sep 15 2023