cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124859 Multiplicative with p^e -> primorial(e), p prime and e > 0.

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 30, 6, 4, 2, 12, 2, 4, 4, 210, 2, 12, 2, 12, 4, 4, 2, 60, 6, 4, 30, 12, 2, 8, 2, 2310, 4, 4, 4, 36, 2, 4, 4, 60, 2, 8, 2, 12, 12, 4, 2, 420, 6, 12, 4, 12, 2, 60, 4, 60, 4, 4, 2, 24, 2, 4, 12, 30030, 4, 8, 2, 12, 4, 8, 2, 180, 2, 4, 12, 12, 4, 8, 2, 420, 210, 4, 2, 24, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 10 2006

Keywords

Examples

			From _Michael De Vlieger_, Mar 06 2017: (Start)
a(2) = 2 since 2 = 2^1, thus primorial p_1# = 2.
a(4) = 6 since 4 = 2^2, thus primorial p_2# = 2*3 = 6.
a(6) = 4 because 6 is squarefree with omega(6)=2, thus 2^2 = 4.
a(8) = 30 since 8 = 2^3, thus primorial p_3# = 2*3*5 = 30.
a(10) = 4 since 10 is squarefree with omega(10)=2, thus 2^2 = 4.
a(12) = 12 since 12 = 2^1 * 3^2, thus primorials p_1# * p_2# = 2*6 = 12.
(End)
		

Crossrefs

Programs

  • Maple
    A124859 := proc(n)
        local a,pf;
        a := 1;
        for pf in ifactors(n)[2] do
            a := a*A002110(pf[2]) ;
        end do:
        a ;
    end proc:
    seq(A124859(n),n=1..80) ; # R. J. Mathar, Oct 06 2017
  • Mathematica
    Table[Which[n == 1, 1, SquareFreeQ@ n, 2^PrimeNu@ n, True, Times @@ Map[Times @@ Prime@ Range@ # &, #[[All, -1]]]] &@ FactorInteger@ n, {n, 86}] (* Michael De Vlieger, Mar 06 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = prod(j=1, f[k,2], prime(j)); f[k,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 16 2015
    
  • Python
    from sympy.ntheory.factor_ import core
    from sympy import factorint, primorial, primefactors
    from operator import mul
    def omega(n): return 0 if n==1 else len(primefactors(n))
    def a(n):
        f=factorint(n)
        return n if n<3 else 2**omega(n) if core(n) == n else reduce(mul, [primorial(f[i]) for i in f]) # Indranil Ghosh, May 13 2017
  • Scheme
    (define (A124859 n) (cond ((= 1 n) 1) (else (* (A002110 (A067029 n)) (A124859 (A028234 n)))))) ;; Antti Karttunen, Mar 06 2017
    

Formula

a(A000040(x)^n) = A002110(n); a(A002110(n)) = A000079(n);
a(A005117(n)) = 2^A001221(A005117(n)) = A072048(n);
A001221(a(n)) = A051903(n); A001222(a(n)) = A001222(n).
From Antti Karttunen, Mar 06 2017: (Start)
a(1) = 1, for n > 1, a(n) = A002110(A067029(n)) * a(A028234(n)).
a(n) = A278159(A156552(n)).
a(A278159(n)) = A278222(n).
a(a(n)) = A046523(n). [after Matthew Vandermast's May 19 2012 formula for the latter sequence]
A181819(a(n)) = A238745(n). [after Matthew Vandermast's formula for the latter sequence]
(End)
a(n) = A108951(A181819(n)). [Primorial inflation of the prime shadow of n] - Antti Karttunen, Sep 15 2023