A125062 Number of increasing trees with hills of height 1.
1, 1, 4, 15, 68, 370, 2364, 17388, 144864, 1349136, 13894560, 156831840, 1925527680, 25550778240, 364416917760, 5559659078400, 90349397913600, 1558170228787200, 28423674336153600, 546807873520742400, 11064204944529408000, 234902850943703040000, 5221386564941352960000
Offset: 0
Keywords
References
- R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997, p25.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Cf. A001620.
Programs
-
Maple
a := n -> ifelse(n = 0, 1, (n - 1)! * (n*(harmonic(n) + 1) - 1)): seq(a(n), n = 0..22); # Peter Luschny, Apr 09 2024
-
Mathematica
With[{nn=20},CoefficientList[Series[(1+x Log[1/(1-x)])/(1-x),{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Mar 14 2012 *) a[0]=1;a[n_]:=(n-1)*(n-1)!+Abs[StirlingS1[n+1,2]];Flatten[Table[a[n],{n,0,19}]] (* Detlef Meya, Apr 09 2024 *)
-
PARI
x='x+O('x^30); Vec(serlaplace((1+x*log(1/(1-x)))/(1-x))) \\ G. C. Greubel, Aug 31 2018
Formula
E.g.f.: (1+x*log(1/(1-x)))/(1-x).
a(n) = 2*(n-1)*a(n-1) - (n^2-4*n+5)*a(n-2) - (n-3)*(n-2)*a(n-3). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ n!*(log(n) + gamma + 1 + O(log(n)/n)), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Nov 19 2012
a(0) = 1; For n > 0; a(n) = (n - 1)*(n - 1)! + abs(Stirling1(n + 1, 2)). - Detlef Meya, Apr 09 2024
Extensions
Edited by the Associate Editors of the OEIS, Oct 05 2009
Comments