cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125062 Number of increasing trees with hills of height 1.

Original entry on oeis.org

1, 1, 4, 15, 68, 370, 2364, 17388, 144864, 1349136, 13894560, 156831840, 1925527680, 25550778240, 364416917760, 5559659078400, 90349397913600, 1558170228787200, 28423674336153600, 546807873520742400, 11064204944529408000, 234902850943703040000, 5221386564941352960000
Offset: 0

Views

Author

Wenjin Woan, Jan 09 2007

Keywords

Comments

If we discard the first 1 and set a(0)=1,a(1)=4, then a(n) = (n+1)!(H(n)+1), where H(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Jul 21 2010

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997, p25.

Crossrefs

Cf. A001620.

Programs

  • Maple
    a := n -> ifelse(n = 0, 1, (n - 1)! * (n*(harmonic(n) + 1) - 1)):
    seq(a(n), n = 0..22);  # Peter Luschny, Apr 09 2024
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1+x Log[1/(1-x)])/(1-x),{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Mar 14 2012 *)
    a[0]=1;a[n_]:=(n-1)*(n-1)!+Abs[StirlingS1[n+1,2]];Flatten[Table[a[n],{n,0,19}]] (* Detlef Meya, Apr 09 2024 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace((1+x*log(1/(1-x)))/(1-x))) \\ G. C. Greubel, Aug 31 2018

Formula

E.g.f.: (1+x*log(1/(1-x)))/(1-x).
a(n) = 2*(n-1)*a(n-1) - (n^2-4*n+5)*a(n-2) - (n-3)*(n-2)*a(n-3). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ n!*(log(n) + gamma + 1 + O(log(n)/n)), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Nov 19 2012
a(0) = 1; For n > 0; a(n) = (n - 1)*(n - 1)! + abs(Stirling1(n + 1, 2)). - Detlef Meya, Apr 09 2024

Extensions

Edited by the Associate Editors of the OEIS, Oct 05 2009