A125169 a(n) = 16*n + 15.
15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 271, 287, 303, 319, 335, 351, 367, 383, 399, 415, 431, 447, 463, 479, 495, 511, 527, 543, 559, 575, 591, 607, 623, 639, 655, 671, 687, 703, 719, 735, 751, 767, 783, 799, 815, 831, 847
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Tanya Khovanova, Recursive Sequences.
- Edward J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(4^2*t-2)).
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
I:=[15, 31]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..60]]; // Vincenzo Librandi, Jan 04 2012
-
Mathematica
Table[16n + 15, {n, 0, 100}] LinearRecurrence[{2,-1},{15,31},100] (* or *) Range[15,1620,16] (* Harvey P. Dale, Jan 03 2012 *)
-
PARI
a(n) = 16*n + 15 \\ Vincenzo Librandi, Jan 04 2012
Formula
a(n) = 2*a(n-1) - a(n-2); a(0)=15, a(1)=31. - Harvey P. Dale, Jan 03 2012
O.g.f.: (15 + x)/(1 - x)^2. - Wolfdieter Lang, Mar 14 2014
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: exp(x)*(15 + 16*x).
a(n) = A004771(2*n+1). (End)
Comments