cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125169 a(n) = 16*n + 15.

Original entry on oeis.org

15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 271, 287, 303, 319, 335, 351, 367, 383, 399, 415, 431, 447, 463, 479, 495, 511, 527, 543, 559, 575, 591, 607, 623, 639, 655, 671, 687, 703, 719, 735, 751, 767, 783, 799, 815, 831, 847
Offset: 0

Views

Author

Artur Jasinski, Nov 22 2006

Keywords

Comments

The identity (16*n + 15)^2 - (16*(n+1)^2 - 2*(n+1))*4^2 = 1 can be written as a(n)^2 - A158058(n+1)*4^2 = 1. - Vincenzo Librandi, Feb 01 2012
a(n-3), n >= 3, appears in the third column of triangle A239126 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014

Crossrefs

Programs

  • Magma
    I:=[15, 31]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..60]]; // Vincenzo Librandi, Jan 04 2012
    
  • Mathematica
    Table[16n + 15, {n, 0, 100}]
    LinearRecurrence[{2,-1},{15,31},100] (* or *) Range[15,1620,16] (* Harvey P. Dale, Jan 03 2012 *)
  • PARI
    a(n) = 16*n + 15 \\ Vincenzo Librandi, Jan 04 2012

Formula

a(n) = 2*a(n-1) - a(n-2); a(0)=15, a(1)=31. - Harvey P. Dale, Jan 03 2012
O.g.f.: (15 + x)/(1 - x)^2. - Wolfdieter Lang, Mar 14 2014
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: exp(x)*(15 + 16*x).
a(n) = A004771(2*n+1). (End)