cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A067200 Numbers m such that m^3 + 2 is prime.

Original entry on oeis.org

0, 1, 3, 5, 29, 45, 63, 65, 69, 71, 83, 105, 113, 123, 129, 143, 153, 171, 173, 189, 209, 215, 219, 231, 243, 245, 249, 263, 291, 299, 305, 311, 341, 363, 369, 395, 419, 425, 431, 435, 473, 483, 491, 495, 501, 503, 509, 515, 533, 549, 555, 561, 575, 579, 639
Offset: 1

Views

Author

Benoit Cloitre, Feb 19 2002

Keywords

Crossrefs

Cf. A144953.
Other sequences of the type "Numbers m such that m^k + k - 1 is prime": A000040 (k=1), A005574 (k=2), this sequence (k=3), A125259 (k=4), A125260 (k=5), A125261 (k=6), A125262 (k=7), A125263 (k=8), A125264 (k=10), A125265 (k=11).

Programs

Formula

a(n) = (A144953(n) - 2)^(1/3). - Zak Seidov, Sep 16 2013

A125260 Numbers k such that k^5 + 4 is prime.

Original entry on oeis.org

1, 7, 9, 25, 39, 45, 73, 85, 99, 147, 163, 165, 169, 189, 213, 219, 223, 225, 249, 253, 259, 279, 333, 337, 385, 433, 457, 465, 469, 477, 499, 595, 639, 643, 655, 703, 709, 715, 729, 849, 853, 895, 969, 973, 979, 987, 1065, 1075, 1077, 1093, 1165, 1239, 1255
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), A125259 (j=4), this sequence (j=5), A125261 (j=6), A125262 (j=7), A125263 (j=8), A125264 (j=10), A125265 (j=11)...

Programs

A125262 Numbers k such that k^7 + 6 is prime.

Original entry on oeis.org

1, 13, 17, 23, 61, 73, 77, 101, 137, 215, 221, 283, 307, 317, 361, 431, 457, 473, 481, 641, 731, 767, 817, 881, 985, 1015, 1061, 1145, 1235, 1283, 1333, 1337, 1343, 1531, 1693, 1711, 1817, 1847, 1853, 1867, 1903, 1963, 2057, 2093, 2113, 2161, 2201, 2363
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), A125259-A125265 (j=4..11).

Programs

A125265 Numbers k such that k^11 + 10 is prime.

Original entry on oeis.org

1, 7, 19, 21, 33, 69, 153, 157, 193, 253, 379, 391, 439, 543, 549, 559, 579, 609, 879, 937, 939, 993, 1063, 1083, 1107, 1119, 1191, 1209, 1267, 1281, 1287, 1333, 1537, 1617, 1797, 1819, 1923, 1971, 1987, 1989, 2041, 2061, 2073, 2101, 2103, 2343, 2373
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), A125259 (j=4), A125260 (j=5), A125261 (j=6), A125262 (j=7), A125263 (j=8), A125264 (j=10).

Programs

A125261 Numbers k such that k^6 + 5 is prime.

Original entry on oeis.org

0, 18, 24, 114, 204, 216, 222, 246, 276, 312, 318, 372, 384, 426, 438, 468, 498, 582, 618, 654, 822, 888, 948, 984, 1182, 1188, 1272, 1278, 1284, 1374, 1446, 1536, 1674, 1782, 1788, 1794, 1806, 1812, 1896, 2034, 2058, 2088, 2124, 2154, 2232, 2238, 2376
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), A125259 (j=4), A125260 (j=5), this sequence(j=6), A125262 (j=7), A125263 (j=8), A125264 (j=10), A125265 (j=11)..

Programs

A125263 Numbers k such that k^8 + 7 is prime.

Original entry on oeis.org

0, 2, 4, 10, 66, 68, 86, 88, 134, 146, 200, 216, 250, 276, 306, 310, 410, 422, 472, 492, 506, 516, 538, 548, 550, 594, 638, 716, 746, 758, 862, 888, 942, 954, 964, 982, 992, 998, 1000, 1016, 1020, 1034, 1108, 1164, 1192, 1234, 1338, 1342, 1350, 1374, 1390
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), A125259 (j=4), A125260 (j=5), A125261 (j=6), A125262 (j=7), this sequence (j=8), A125264 (j=10), A125265 (j=11)...

Programs

A125264 Numbers k such that k^10 + 9 is prime.

Original entry on oeis.org

2, 8, 238, 310, 338, 442, 542, 688, 698, 872, 920, 1198, 1330, 1382, 1538, 1558, 1678, 1702, 1712, 1768, 1882, 2032, 2080, 2102, 2260, 2312, 2408, 2440, 2540, 2642, 3112, 3170, 3188, 3268, 3320, 3580, 3740, 3742, 3770, 3980, 4028, 4048, 4148, 4292, 4472
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), A125259 (j=4), A125260 (j=5), A125261 (j=6), A125262 (j=7), A125263 (j=8), this sequence (j=10), A125265 (j=11).

Programs

A127871 Numbers n such that n^4+1 and n^4+3 are twin primes.

Original entry on oeis.org

2, 16, 28, 34, 82, 118, 266, 296, 328, 436, 778, 1126, 1238, 1280, 1486, 1496, 1612, 1952, 2102, 2192, 2312, 2414, 2578, 2690, 2770, 2834, 2872, 3100, 3410, 3550, 3620, 3752, 4012, 4016, 4240, 4264, 4450, 4772, 5084, 5458, 5732, 5798, 5864, 6704, 7208
Offset: 1

Views

Author

Zak Seidov, Apr 05 2007

Keywords

Comments

Intersection of A000068 and A125259.
Smallest k such that a(k+1) = a(k) + 2 is 364. - Altug Alkan, May 15 2018

Crossrefs

Programs

  • Maple
    select(t -> isprime(t^4+1) and isprime(t^4+3), [seq(i,i=2..10^4,2)]); # Robert Israel, May 14 2018
  • Mathematica
    Select[Range[0,200000,2],PrimeQ[ #^4+1]&&PrimeQ[ #^4+3]&]
    Select[Range[7300],AllTrue[#^4+{1,3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 18 2019 *)
  • PARI
    isok(n) = isprime(n^4+1) && isprime(n^4+3); \\ Michel Marcus, May 15 2018

A147515 Numbers n with property that (2n)^4+3 is prime.

Original entry on oeis.org

0, 1, 4, 8, 11, 13, 14, 17, 22, 31, 34, 38, 41, 46, 52, 55, 59, 64, 67, 83, 92, 101, 106, 133, 143, 148, 157, 164, 175, 178, 188, 203, 214, 218, 230, 235, 253, 260, 266, 281, 290, 319, 325, 326, 340, 346, 361, 367, 370, 389, 406, 410, 412, 431, 448, 454, 461, 466
Offset: 1

Views

Author

Zak Seidov, Nov 05 2008

Keywords

Crossrefs

Cf. A125259.

Programs

  • Mathematica
    Select[Range[0,500],PrimeQ[(2#)^4+3]&] (* Harvey P. Dale, Jul 18 2019 *)
  • PARI
    isok(n) = isprime((2*n)^4+3); \\ Michel Marcus, Oct 15 2013

Formula

a(n) = A125259(n)/2.
Showing 1-9 of 9 results.