cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A126197 GCDs arising in A126196.

Original entry on oeis.org

11, 1093, 1093, 3511, 3511, 5557, 104891, 1006003
Offset: 1

Views

Author

Max Alekseyev and Tanya Khovanova, Mar 07 2007

Keywords

Comments

All terms are primes. Note a connection to the Wieferich primes A001220: a(2) = a(3) = A001220(1), a(3) = a(4) = A001220(2).
From John Blythe Dobson, Jan 14 2017: (Start)
All Wieferich primes p will belong to this sequence twice, because if H([p/k]) denotes the harmonic number with index floor(p/k), then p divides all of H([p/4]), H([p/2]), and H(p-1). The first two of these elements gives one solution, and the second and third another. This property of the Wieferich primes predates their name, and was apparently first proved by Glaisher in "On the residues of r^(p-1) to modulus p^2, p^3, etc.," pp. 21-22, 23 (see References).
Note also a connection to the Mirimanoff primes A014127: a(1) = A014127(1), a(8) = A014127(2). All Mirimanoff primes p will belong to this sequence, because p divides both H([p/3]) and H([2p/3]). This property of the Mirimanoff primes likewise predates their name, and was apparently first proved by Glaisher in "A general congruence theorem relating to the Bernoullian function," p. 50 (see Links).
The Wieferich primes and Mirimanoff primes would seem to be the only cases for which the value of n in A126196(n) is predictable from knowledge of p. It is not obvious that all members of the present sequence are prime; however, by definition all their divisors must be non-harmonic primes A092102. Furthermore, it is clear from the cited literature under that entry that H([n/2]) == H(n) == 0 (mod p) is only possible when n < p. Thus, all divisors of the present sequence must belong to the harmonic irregular primes A092194.
One possible reason for interest in this sequence is a 1995 result of Dilcher and Skula (see Links) which among other things shows that if a prime p were an exception to the first case of Fermat's Last Theorem, then p would divide both H([p/k]) and H([2p/k]) for every value of k from 2 to 46. To date, the only values for which such coincidences have been found have k = 2, 3, or 4. For k = 6 to hold, p would have to be simultaneously a Wieferich prime and a Mirimanoff prime, while for k = 5 to hold, p would have to be simultaneously a Wall-Sun-Sun prime and a member of A123692. The sparse numerical results for the present sequence suggest that even the more relaxed condition H([n/2]) == H(n) == 0 (mod p) is rarely satisfied. (End)

References

  • J. W. L. Glaisher, On the residues of r^(p-1) to modulus p^2, p^3, etc., Quarterly Journal of Pure and Applied Mathematics 32 (1900-1901), 1-27.

Crossrefs

Programs

  • Mathematica
    f[n_] := GCD @@ Numerator@ HarmonicNumber@ {n, Floor[n/2]}; f@ Select[ Range[5000], f[#] > 1 &] (* Giovanni Resta, May 13 2016 *)

Extensions

a(8) from Giovanni Resta, May 13 2016

A126196 Numbers k such that gcd(A001008(k), A001008(floor(k/2))) > 1.

Original entry on oeis.org

7, 546, 1092, 1755, 3510, 4896, 52447, 670668
Offset: 1

Views

Author

Max Alekseyev and Tanya Khovanova, Mar 07 2007, corrected Mar 10 2007

Keywords

Comments

Note a connection to the Wieferich primes A001220: a(2) = (A001220(1) - 1)/2, a(3) = A001220(1) - 1, a(4) = (A001220(2) - 1)/2, a(5) = A001220(2) - 1. [Comment regarding a(2) added by Kevin J. Gomez, Jul 11 2017]
a(9) > 840000. - Giovanni Resta, May 13 2016

Crossrefs

The corresponding GCDs are given by A126197.

Programs

  • Mathematica
    Select[Range[5000], GCD @@ Numerator@ HarmonicNumber@{#, Floor[#/2]} > 1 &] (* Giovanni Resta, May 13 2016 *)
  • PARI
    a001008(n)=numerator(sum(i=1, n, 1/i))
    for(n=1, 1e6, if(gcd(a001008(n), a001008(n/2)) > 1, print1(n, ", "))) \\ Felix Fröhlich, Aug 08 2014

Extensions

a(8) from Giovanni Resta, May 13 2016

A128672 Numbers m such that m^k does not divide the denominator of the m-th generalized harmonic number H(m,k) nor the denominator of the m-th alternating generalized harmonic number H'(m,k), for k = 2.

Original entry on oeis.org

20, 42, 100, 110, 156, 272, 294, 342, 500, 506, 812, 930, 1210, 1332, 1640, 1806, 2028, 2058, 2162, 2500, 2756, 3422, 3660, 4422, 4624, 4970, 5256, 6162, 6498, 6806, 7832, 9312, 10100, 10506, 11026, 11342, 11638, 11772, 12500, 12656, 13310, 14406, 16002, 17030
Offset: 1

Views

Author

Alexander Adamchuk, Mar 20 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Sequence contains all geometric progressions of the form (p-1)*p^k for k > 0 and some primes p > 3. Note the factorization of initial terms of {a(n)} = {4*5, 6*7, 4*5^2, 10*11, 12*13, 16*17, 6*7^2, 18*19, 4*5^3, 22*23, 28*29, 30*31, 10*11^2, 36*37, 40*41, 42*43, 12*13^2, 6*7^3, 46*47, 4*5^4, 52*53, 58*59, 60*61, 66*67, 16*17^2, 70*71, 72*73, 78*79, 18*19^2, 82*83, ...}. The smallest term that does not fit this pattern is 11026 = ((149-1)/2) * 149.

Crossrefs

Similar sequences for generalized harmonic numbers with different k: A125581 (k=1), A128673 (k=3), A128674 (k=4), A128675 (k=5); A128676 (k=6).
For the least numbers k > 0 such that k^n does not divide the denominator of H(k,n) nor the denominator of H'(k,n), see A128670. See also A128671(n) = A128670(prime(n)).

Programs

  • Mathematica
    k=2; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n,1,7000} ]

Extensions

Edited and extended by Max Alekseyev, May 07 2010

A128673 Numbers m such that m^k does not divide the denominator of the m-th generalized harmonic number H(m,k) nor the denominator of the m-th alternating generalized harmonic number H'(m,k), for k = 3.

Original entry on oeis.org

94556602, 141834903, 189113204, 283669806, 450820422
Offset: 1

Views

Author

Alexander Adamchuk, Apr 18 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Note that {a(n)} contains the following geometric progressions: ((16843-1)/3)*16843^m found by Max Alekseyev, ((16843-1)/2)*16843^m found by Max Alekseyev, ((16843-1)*2/3)*16843^m, (16843-1)*16843^m, 20826*21647^m found by Max Alekseyev, ((2124679-1)/3)*2124679^m, ((2124679-1)/2)*2124679^m, ((2124679-1)*2/3)*2124679^m, (2124679-1)*2124679^m. Here {16843, 2124679} = A088164 are the only two currently known Wolstenholme Primes: primes p such that {2p-1} choose {p-1} == 1 mod p^4. See more details in Comments at A128672 and A125581.

Crossrefs

Programs

  • Mathematica
    k=3; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n, 1, 450820422} ]

A128676 Numbers m such that m^k does not divide the denominator of the m-th generalized harmonic number H(m,k) nor the denominator of the m-th alternating generalized harmonic number H'(m,k), for k = 6.

Original entry on oeis.org

20, 100, 110, 156, 161, 272, 342, 345, 500, 506, 812, 930, 1210, 1332, 1640, 1806, 2028, 2162, 2500, 2756, 3051, 3422, 3660, 3703, 4422, 4624, 4970, 5256, 6162, 6498, 6806, 7832, 7935, 9312, 9605, 10100, 10506, 11342, 11638, 11772, 12500, 12656, 13310
Offset: 1

Views

Author

Alexander Adamchuk, Mar 20 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Sequence contains all terms of geometric progressions of the form (p-1)*p^k, k > 0, for some primes p >= 5, such as 4*5^k, 7*23^k, 15*23^k, 27*113^k, etc. Note the factorization of initial terms of {a(n)} = {4*5, 4*5^2, 10*11, 12*13, 7*23, 16*17, 18*19, 15*23, 4*5^3, 22*23, 28*29, 30*31, 10*11^2, 36*37, 40*41, 42*43, 12*13^2, 46*47, 4*5^4, 52*53, 27*113, 58*59, 60*61, 7*23^2, ...}. See more details in Comments at A128672 and A125581.

Crossrefs

Programs

  • Mathematica
    k=6; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n,1,3703} ]

Extensions

Edited and extended by Max Alekseyev, May 08 2010

A128675 Numbers m such that m^k does not divide the denominator of the m-th generalized harmonic number H(m,k) nor the denominator of the n-th alternating generalized harmonic number H'(m,k), for k = 5.

Original entry on oeis.org

444, 666, 888, 1332, 16428, 24642, 32856, 49284, 607836, 911754, 1215672, 1823508
Offset: 1

Views

Author

Alexander Adamchuk, Mar 20 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Sequence contains all terms of geometric progressions 37^k*(37-1)/3, 37^k*(37-1)/2, 37^k*(37-1)*2/3, 37^k*(37-1) for k > 0. Note the factorization of initial terms of {a(n)} = {37*12, 37*18, 37*24, 37*36, ...}. See more details in Comments at A128672 and A125581.

Crossrefs

Programs

  • Mathematica
    k=5; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n,1,2000} ]

Extensions

Eight more terms from Max Alekseyev, May 08 2010

A128670 Least number k > 0 such that k^n does not divide the denominator of generalized harmonic number H(k,n) nor the denominator of alternating generalized harmonic number H'(k,n).

Original entry on oeis.org

77, 20, 94556602, 42, 444, 20, 104, 42, 76, 20, 77, 110, 3504, 20, 903, 42, 1107, 20, 104, 42, 77, 20, 2948, 110, 136, 20, 76, 42, 903, 20, 77, 42, 268, 20, 7004, 110, 1752, 20, 19203, 42, 77, 20, 104, 42, 76, 20, 370, 110, 1107, 20, 77, 42, 12246, 20, 104, 42
Offset: 1

Views

Author

Alexander Adamchuk, Mar 24 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m}1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Some apparent periodicity in {a(n)} (not without exceptions): a(n) = 20 for n = 2 + 4m, a(n) = 42 for n = 4 + 12m and 8 + 12m, a(n) = 76 for n = 9 + 18m, a(n) = 77 for n = 1 + 10m, a(n) = 104 for n = 7 + 12m, a(n) = 110 for n = 12m, a(n) = 136 for n = 25 + 32m, etc.
See more details in Comments at A128672 and A125581.

Crossrefs

Extensions

More terms and b-file from Max Alekseyev, May 07 2010

A128674 Numbers m such that m^k does not divide the denominator of the m-th generalized harmonic number H(m,k) nor the denominator of the m-th alternating generalized harmonic number H'(m,k), for k = 4.

Original entry on oeis.org

42, 110, 156, 272, 294, 342, 506, 812, 930, 1210, 1332, 1640, 1806, 2028, 2058, 2162, 2756, 3422, 3660, 4422, 4624, 4970, 5256, 6162, 6498, 6806, 7832, 9312, 10100, 10506, 11342, 11638, 11772, 12656, 13310, 14406, 16002, 17030, 18632, 19182, 22052, 22650, 23548, 24492, 26364
Offset: 1

Views

Author

Alexander Adamchuk, Mar 20 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Sequence contains geometric progressions of the form (p-1)*p^k for k > 0 and some prime p > 5. Note the factorization of initial terms of {a(n)} = {6*7, 10*11, 12*13, 16*17, 6*7^2, 18*19, 22*23, 28*29, 30*31, 10*11*2, 36*37, 40*41, 42*43, 12*13^2, 6*7^3, ...}. See more details in Comments at A128672 and A125581.

Crossrefs

Programs

  • Mathematica
    k=4; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n,1,2000} ]

Extensions

Edited and extended by Max Alekseyev, May 09 2010

A125740 Numbers n such that A117731(n) differs from A082687(n).

Original entry on oeis.org

14, 52, 98, 105, 111, 114, 119, 164, 310, 444, 518, 602, 676, 686, 715, 735, 749, 833, 1220, 1278, 1339, 1474, 1752, 1946, 2023, 2054, 2166, 3016, 3104, 3502, 3568, 3924, 4107, 4308, 4802, 5145, 5243, 5334, 5718, 5831, 6394, 6724, 7550, 8135, 8164, 8767
Offset: 1

Views

Author

Alexander Adamchuk, Dec 04 2006, Mar 12 2007

Keywords

Comments

All listed terms are composite.
The ratio of A117731(n) and A082687(n) when they are different is listed in A125741(n) = A117731[ a(n) ] / A082687[ a(n) ] = {7, 13, 7, 7, 37, 19, 119, 41, 31, 37, 37, 43, 13, 7, 13, 49, 7, 7, 61, 71, 103, 67, 73, 139, ...}.
It appears that all (or almost all) members of geometric progressions 2*7^k, 4*13^k, 15*7^k, 3^37^k, 6*19^k, 17*7^k, 4*41^k, 10*31^k, 12*37^k, 55*13^k, 107*7^k, etc. for k>0 are in the sequence.

Examples

			A117731(n) begins {1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 54260455193, ...}.
A082687(n) begins {1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, ...}.
Thus a(1) = 14 because for n<14 A117731(n) = A082687(n) but A117731(14) = 54260455193 differs from A082687(14) = 7751493599.
		

Crossrefs

Cf. A117731 = Numerator of n*Sum[ 1/(n+k), {k, 1, n} ]. Cf. A082687 = Numerator of Sum[ 1/(n+k), {k, 1, n} ]. Cf. A125741 = The ratio of A117731(n) and A082687(n) when they are different.
Cf. A082687(n) = numerator of the 2n-th alternating harmonic number H'(2n) = Sum ((-1)^(k+1)/k, k=1..2n). H'(2n) = H(2n) - H(n), where H(n) = Sum (1/k, k=1..n) is the n-th harmonic number. A117731(n) = numerator of the sum of all matrix elements of n X n Hilbert matrix M(i, j) = 1/(i+j-1), (i, j=1..n).
Cf. A126196, A126197, A125581 = numbers n such that n does not divide the denominator of the n-th harmonic number nor the denominator of the n-th alternating harmonic number.

Programs

  • Mathematica
    h=0; Do[ h=h+1/(n+1)/(2n+1); f=Numerator[n*h]; g=Numerator[h]; If[ !Equal[f,g], Print[n] ], {n,1,17381} ]

A128671 Least number k > 0 such that k^p does not divide the denominator of generalized harmonic number H(k,p) nor the denominator of alternating generalized harmonic number H'(k,p), where p = prime(n).

Original entry on oeis.org

20, 94556602, 444, 104, 77, 3504, 1107, 104, 2948, 903, 77, 1752, 77, 104, 370
Offset: 1

Views

Author

Alexander Adamchuk, Mar 24 2007, Mar 26 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{i=1..m} 1/i^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{i=1..m} (-1)^(i+1)*1/i^k.
a(18)..a(24) = {77,104,77,136,104,370,136}. a(26)..a(27) = {77,104}.
a(n) is currently unknown for n = {16,17,25,...}. See more details in Comments at A128672 and A125581.

Examples

			a(2) = A128673(1) = 94556602.
		

Crossrefs

Formula

a(n) = A128670(prime(n)).

Extensions

a(9) = 2948 and a(12) = 1752 from Max Alekseyev
Edited by Max Alekseyev, Feb 20 2019
Showing 1-10 of 11 results. Next