A125711 In the "3x+1" problem, let 1 denote a halving step and 0 denote an x->3x+1 step. Then a(n) is obtained by writing the sequence of steps needed to reach 1 from 2n and reading it as a decimal number.
1, 3, 175, 7, 47, 431, 87791, 15, 743151, 111, 22255, 943, 751, 218863, 175087, 31, 5871, 1791727, 1431279, 239, 191, 55023, 44015, 1967, 11917039, 1775, 3515647479163389605506303638875119, 481007, 382703, 437231, 108202665749908974283165422824431, 63, 95803119
Offset: 1
Examples
6 -> 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1, so a(3) is the decimal equivalent of 10101111, which is 175.
Links
Programs
-
Maple
b:= proc(n) option remember; `if`(n=1, [0$2], `if`(n::even, (p-> p+[1, 2^p[1]])(b(n/2)), (p-> p+[1, 0])(b(3*n+1)))) end: a:= n-> b(2*n)[2]: seq(a(n), n=1..33); # Alois P. Heinz, Apr 02 2025
-
Mathematica
f[x_] := If[EvenQ[x], x/2, 3x + 1];g[n_] := FromDigits[Mod[Most[NestWhileList[f, 2n, # > 1 &]], 2, 1] - 1, 2];Table[g[n], {n, 40}] (* Ray Chandler, Feb 02 2007 *)
Extensions
Extended by Ray Chandler, Feb 02 2007
Comments