cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126116 a(n) = a(n-1) + a(n-3) + a(n-4), with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 7, 11, 19, 31, 49, 79, 129, 209, 337, 545, 883, 1429, 2311, 3739, 6051, 9791, 15841, 25631, 41473, 67105, 108577, 175681, 284259, 459941, 744199, 1204139, 1948339, 3152479, 5100817, 8253295, 13354113, 21607409, 34961521
Offset: 0

Views

Author

Luis A Restrepo (luisiii(AT)mac.com), Mar 05 2007

Keywords

Comments

This sequence has the same growth rate as the Fibonacci sequence, since x^4 - x^3 - x - 1 has the real roots phi and -1/phi.
The Ca1 sums, see A180662 for the definition of these sums, of triangle A035607 equal the terms of this sequence without the first term. - Johannes W. Meijer, Aug 05 2011

Examples

			G.f. = 1 + x + x^2 + x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 11*x^7 + 19*x^8 + 31*x^9 + ...
		

References

  • S. Wolfram, A New Kind of Science. Champaign, IL: Wolfram Media, pp. 82-92, 2002

Crossrefs

Cf. Fibonacci numbers A000045; Lucas numbers A000032; tribonacci numbers A000213; tetranacci numbers A000288; pentanacci numbers A000322; hexanacci numbers A000383; 7th-order Fibonacci numbers A060455; octanacci numbers A079262; 9th-order Fibonacci sequence A127193; 10th-order Fibonacci sequence A127194; 11th-order Fibonacci sequence A127624, A128429.

Programs

  • GAP
    a:=[1,1,1,1];; for n in [5..50] do a[n]:=a[n-1]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jul 15 2019
  • Magma
    [n le 4 select 1 else Self(n-1) + Self(n-3) + Self(n-4): n in [1..50]]; // Vincenzo Librandi, Dec 25 2015
    
  • Maple
    # From R. J. Mathar, Jul 22 2010: (Start)
    A010684 := proc(n) 1+2*(n mod 2) ; end proc:
    A000032 := proc(n) coeftayl((2-x)/(1-x-x^2),x=0,n) ; end proc:
    A126116 := proc(n) ((-1)^floor(n/2)*A010684(n)+2*A000032(n))/5 ; end proc: seq(A126116(n),n=0..80) ; # (End)
    with(combinat): A126116 := proc(n): fibonacci(n-1) + fibonacci(floor((n-4)/2)+1)* fibonacci(ceil((n-4)/2)+2) end: seq(A126116(n), n=0..38); # Johannes W. Meijer, Aug 05 2011
  • Mathematica
    LinearRecurrence[{1,0,1,1},{1,1,1,1},50] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    Vec((x-1)*(1+x+x^2)/((x^2+x-1)*(x^2+1)) + O(x^50)) \\ Altug Alkan, Dec 25 2015
    
  • Sage
    ((1-x)*(1+x+x^2)/((1-x-x^2)*(1+x^2))).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jul 15 2019
    

Formula

From R. J. Mathar, Jul 22 2010: (Start)
G.f.: (1-x)*(1+x+x^2)/((1-x-x^2)*(1+x^2)).
a(n) = ( (-1)^floor(n/2) * A010684(n) + 2*A000032(n))/5.
a(2*n) = A061646(n). (End)
From Johannes W. Meijer, Aug 05 2011: (Start)
a(n) = F(n-1) + A070550(n-4) with F(n) = A000045(n).
a(n) = F(n-1) + F(floor((n-4)/2) + 1)*F(ceiling((n-4)/2) + 2). (End)
a(n) = (1/5)*((sqrt(5)-1)*(1/2*(1+sqrt(5)))^n - (1+sqrt(5))*(1/2*(1-sqrt(5)))^n + sin((Pi*n)/2) - 3*cos((Pi*n)/2)). - Harvey P. Dale, Nov 08 2011
(-1)^n * a(-n) = a(n) = F(n) - A070550(n - 6). - Michael Somos, Feb 05 2012
a(n)^2 + 3*a(n-2)^2 + 6*a(n-5)^2 + 3*a(n-7)^2 = a(n-8)^2 + 3*a(n-6)^2 + 6*a(n-3)^2 + 3*a(n-1)^2. - Greg Dresden, Jul 07 2021
a(n) = A293411(n)-A293411(n-1). - R. J. Mathar, Jul 20 2025

Extensions

Edited by Don Reble, Mar 09 2007