cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A126275 Moment of inertia of all magic squares of order n.

Original entry on oeis.org

5, 60, 340, 1300, 3885, 9800, 21840, 44280, 83325, 147620, 248820, 402220, 627445, 949200, 1398080, 2011440, 2834325, 3920460, 5333300, 7147140, 9448285, 12336280, 15925200, 20345000, 25742925, 32284980, 40157460, 49568540, 60749925, 73958560, 89478400
Offset: 2

Views

Author

Jonathan Vos Post, Dec 23 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[(#^2*(#^4 - 1))/12 &, 31, 2] (* or *)
    Drop[CoefficientList[Series[-5 x^2*(x + 1) (x^2 + 4 x + 1)/(x - 1)^7, {x, 0, 32}], x], 2] (* Michael De Vlieger, Apr 13 2021 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{5,60,340,1300,3885,9800,21840},40] (* Harvey P. Dale, Apr 03 2023 *)
  • PARI
    a(n) = (n^2 * (n^4 - 1))/12 \\ Felix Fröhlich, May 31 2021
    
  • PARI
    Vec(-5*x^2*(x+1)*(x^2+4*x+1)/(x-1)^7 + O(x^30)) \\ Felix Fröhlich, May 31 2021

Formula

a(n) = (n^2 * (n^4 - 1))/12.
G.f.: -5*x^2*(x+1)*(x^2+4*x+1) / (x-1)^7. - Colin Barker, Dec 10 2012
a(n) = Sum_{i=0..n^2-1} (k+i)^2 - (k*n + A027480(n-1))^2. - Charlie Marion, May 08 2021
From Amiram Eldar, Jul 03 2025: (Start)
Sum_{n>=2} 1/a(n) = 3*Pi*coth(Pi) - 2*Pi^2 + 21/2.
Sum_{n>=2} (-1)^n/a(n) = 3*Pi*cosech(Pi) + Pi^2 - 21/2. (End)

Extensions

More terms from Colin Barker, Dec 10 2012

A126976 A 6 x 6 magic square read by rows.

Original entry on oeis.org

6, 32, 3, 34, 35, 1, 7, 11, 27, 28, 8, 30, 19, 14, 16, 15, 23, 24, 18, 20, 22, 21, 17, 13, 25, 29, 10, 9, 26, 12, 36, 5, 33, 4, 2, 31
Offset: 1

Views

Author

Parthasarathy Nambi, Mar 20 2007

Keywords

Comments

The magic sum is 111.

Examples

			The magic square is:
6 32 3 34 35 1
7 11 27 28 8 30
19 14 16 15 23 24
18 20 22 21 17 13
25 29 10 9 26 12
36 5 33 4 2 31
		

Crossrefs

A126977 A 3 x 3 multiplicative magic square read by rows.

Original entry on oeis.org

2, 9, 12, 36, 6, 1, 3, 4, 18
Offset: 1

Views

Author

Parthasarathy Nambi, Mar 20 2007

Keywords

Comments

The magic product is 216.

Examples

			The magic square is:
2 9 12
36 6 1
3 4 18
		

Crossrefs

Showing 1-3 of 3 results.