A126284 a(n) = 5*2^n - 4*n - 5.
1, 7, 23, 59, 135, 291, 607, 1243, 2519, 5075, 10191, 20427, 40903, 81859, 163775, 327611, 655287, 1310643, 2621359, 5242795, 10485671, 20971427, 41942943, 83885979, 167772055, 335544211, 671088527, 1342177163, 2684354439
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
GAP
List([1..30],n->5*2^n-4*n-5); # Muniru A Asiru, Oct 24 2018
-
Magma
[5*2^n - 4*n - 5: n in [1..30]]; // G. C. Greubel, Oct 23 2018
-
Maple
A126284:=n->5*2^n-4*n-5; seq(A126284(n), n=1..50); # Wesley Ivan Hurt, Mar 27 2014
-
Mathematica
CoefficientList[Series[(1 + 3 x)/(1 - 4 x + 5 x^2 - 2 x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 28 2014 *)
-
PARI
a(n)=5<
Charles R Greathouse IV, Oct 03 2012
Formula
a(1) = 1; a(2) = 7; a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3), n > 2.
The 6th diagonal from the right of A126277.
G.f.: x*(1+3*x)/(1-4*x+5*x^2-2*x^3). - Colin Barker, Feb 12 2012
E.g.f.: 5*exp(2*x) - (5+4*x)*exp(x). - G. C. Greubel, Oct 23 2018
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Oct 18 2008
New definition from R. J. Mathar, Sep 29 2012
Comments