cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126284 a(n) = 5*2^n - 4*n - 5.

Original entry on oeis.org

1, 7, 23, 59, 135, 291, 607, 1243, 2519, 5075, 10191, 20427, 40903, 81859, 163775, 327611, 655287, 1310643, 2621359, 5242795, 10485671, 20971427, 41942943, 83885979, 167772055, 335544211, 671088527, 1342177163, 2684354439
Offset: 1

Views

Author

Gary W. Adamson, Dec 24 2006

Keywords

Comments

Row sums of A125233.
A triangle with left and right borders being the odd numbers 1,3,5,7,... will give the same partial sums for the sum of its rows. - J. M. Bergot, Sep 29 2012
The triangle in the above comment is constructed the same way as Pascal's triangle, i.e., C(n, k) = C(n-1, k) + C(n-1, k-1). - Michael B. Porter, Oct 03 2012

Crossrefs

Programs

  • GAP
    List([1..30],n->5*2^n-4*n-5); # Muniru A Asiru, Oct 24 2018
  • Magma
    [5*2^n - 4*n - 5: n in [1..30]]; // G. C. Greubel, Oct 23 2018
    
  • Maple
    A126284:=n->5*2^n-4*n-5; seq(A126284(n), n=1..50); # Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    CoefficientList[Series[(1 + 3 x)/(1 - 4 x + 5 x^2 - 2 x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 28 2014 *)
  • PARI
    a(n)=5<Charles R Greathouse IV, Oct 03 2012
    

Formula

a(1) = 1; a(2) = 7; a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3), n > 2.
The 6th diagonal from the right of A126277.
G.f.: x*(1+3*x)/(1-4*x+5*x^2-2*x^3). - Colin Barker, Feb 12 2012
E.g.f.: 5*exp(2*x) - (5+4*x)*exp(x). - G. C. Greubel, Oct 23 2018

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Oct 18 2008
New definition from R. J. Mathar, Sep 29 2012