cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126596 a(n) = binomial(4*n,n)*(2*n+1)/(3*n+1).

Original entry on oeis.org

1, 3, 20, 154, 1260, 10659, 92092, 807300, 7152444, 63882940, 574221648, 5188082354, 47073334100, 428634152730, 3914819231400, 35848190542920, 329007937216860, 3025582795190340, 27872496751392496, 257172019222240200, 2376196095585231920, 21983235825545286435
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2007

Keywords

Comments

Number of standard Young tableaux of shape [3n,n]. Also the number of binary words with 3n 1's and n 0's such that for every prefix the number of 1's is >= the number of 0's. The a(1) = 3 words are: 1011, 1101, 1110. - Alois P. Heinz, Aug 15 2012

Crossrefs

Column k=3 of A214776.

Programs

  • Haskell
    a126596 n = a005810 n * a005408 n `div` a016777 n
    -- Reinhard Zumkeller, Mar 04 2012
  • Magma
    [Binomial(4*n,n)*(2*n+1)/(3*n+1): n in [0..20]]; // Vincenzo Librandi, Nov 18 2011
    
  • Maple
    seq((2*n+1)*binomial(4*n,n)/(3*n+1),n=0..22); # Emeric Deutsch, Mar 27 2007
  • Mathematica
    Table[(Binomial[4n,n](2n+1))/(3n+1),{n,0,30}] (* Harvey P. Dale, Feb 06 2016 *)

Formula

a(n) = A039599(2*n,n).
a(n) = (2*n+1)*A002293(n). - Mark van Hoeij, Nov 17 2011
a(n) = A208983(2*n+1). - Reinhard Zumkeller, Mar 04 2012
a(n) = A005810(n) * A005408(n) / A016777(n). - Reinhard Zumkeller, Mar 04 2012
a(n) = [x^n] ((1 - sqrt(1 - 4*x))/(2*x))^(2*n+1). - Ilya Gutkovskiy, Nov 01 2017
Recurrence: 3*n*(3*n-1)*(3*n+1)*a(n) = 8*(2*n+1)*(4*n-3)*(4*n-1)*a(n-1). - Vaclav Kotesovec, Feb 03 2018
a(n) ~ 2^(8*n+3/2) / (3^(3*n+3/2) * sqrt(Pi*n)). - Amiram Eldar, Aug 29 2025

Extensions

More terms from Emeric Deutsch, Mar 27 2007