A127013
Triangle read by rows: row reversal of A126988.
Original entry on oeis.org
1, 1, 2, 1, 0, 3, 1, 0, 2, 4, 1, 0, 0, 0, 5, 1, 0, 0, 2, 3, 6, 1, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 2, 0, 4, 8, 1, 0, 0, 0, 0, 0, 3, 0, 9, 1, 0, 0, 0, 0, 2, 0, 0, 5, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 2, 0, 3, 4, 6, 12, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13
Offset: 1
First few rows of the triangle are:
1;
1, 2;
1, 0, 3;
1, 0, 2, 4;
1, 0, 0, 0, 5;
1, 0, 0, 2, 3, 6;
1, 0, 0, 0, 0, 0, 7;
1, 0, 0, 0, 2, 0, 4, 8;
1, 0, 0, 0, 0, 0, 3, 0, 9;
1, 0, 0, 0, 0, 2, 0, 0, 5, 10;
Row 10 = (1, 0, 0, 0, 0, 2, 0, 0, 5, 10), reversal of 10th row of A126988.
- David Wells, "Prime Numbers, The Most Mysterious Figures in Math", John Wiley & Sons, 2005, Appendix.
-
a127013 n k = a127013_tabl !! (n-1) !! (k-1)
a127013_row n = a127013_tabl !! (n-1)
a127013_tabl = map reverse a126988_tabl
-- Reinhard Zumkeller, Jan 20 2014
-
[[(n mod (n-k+1)) eq 0 select n/(n-k+1) else 0: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 03 2019
-
T[n_,m_]:= If[Mod[n, m]==0, n/m, 0]; Table[T[n,n-m+1], {n, 1, 12}, {m, 1, n}]//Flatten (* G. C. Greubel, Jun 03 2019 *)
-
{T(n, k) = if(n%k==0, n/k, 0)};
for(n=1,12, for(k=1,n, print1(T(n,n-k+1), ", "))) \\ G. C. Greubel, Jun 03 2019
-
def T(n, k):
if (n%k==0): return n/k
else: return 0
[[T(n, n-k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 03 2019
Original entry on oeis.org
1, 5, 2, 10, 0, 3, 21, 10, 0, 4, 26, 0, 0, 0, 5, 50, 20, 15, 0, 0, 6, 50, 0, 0, 0, 0, 0, 7, 85, 42, 0, 20, 0, 0, 0, 8, 91, 0, 30, 0, 0, 0, 0, 0, 9, 130, 52, 0, 0, 25, 0, 0, 0, 0, 10, 122, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 210, 100, 63, 40, 0, 30, 0, 0, 0, 0, 0, 12, 170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
First few rows of the triangle are:
1;
5, 2;
10, 0, 3;
21, 10, 0, 4;
26, 0, 0, 0, 5;
50, 20, 15, 0, 0, 6;
50, 0, 0, 0, 0, 0, 7;
...
-
A127093 := proc(n,m) if n mod m = 0 then m; else 0 ; fi; end:
A126988 := proc(n,k) if n mod k = 0 then n/k; else 0; fi; end:
A127097 := proc(n,m) add( A127093(n,j)*A126988(j,m),j=m..n) ; end:
for n from 1 to 15 do for m from 1 to n do printf("%d,",A127097(n,m)) ; od: od: # R. J. Mathar, Aug 18 2009
Original entry on oeis.org
1, 3, 2, 4, 0, 3, 7, 6, 0, 4, 6, 0, 0, 0, 5, 12, 8, 9, 0, 0, 6, 8, 0, 0, 0, 0, 0, 7, 15, 14, 0, 12, 0, 0, 0, 8, 13, 0, 12, 0, 0, 0, 0, 0, 9, 18, 12, 0, 0, 15, 0, 0, 0, 0, 10, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 28, 24, 21, 16, 0, 18, 0, 0, 0, 0, 0, 12, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 24, 16, 0, 0
Offset: 1
First few rows of the triangle are:
1;
3, 2;
4, 0, 3;
7, 6, 0, 4;
6, 0, 0, 0, 5;
12, 8, 9, 0, 0, 6;
8, 0, 0, 0, 0, 0, 7;
15, 14, 0, 12, 0, 0, 0, 8;
13, 0, 12, 0, 0, 0, 0, 0, 9;
18, 12, 0, 0, 15, 0, 0, 0, 0, 10;
...
A143315
Triangle read by rows: T(n, k) = 2*A126988(n, k) - signum(A126988(n, k)).
Original entry on oeis.org
1, 3, 1, 5, 0, 1, 7, 3, 0, 1, 9, 0, 0, 0, 1, 11, 5, 3, 0, 0, 1, 13, 0, 0, 0, 0, 0, 1, 15, 7, 0, 3, 0, 0, 0, 1, 17, 0, 5, 0, 0, 0, 0, 0, 1, 19, 9, 0, 0, 3, 0, 0, 0, 0, 1, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 23, 11, 7, 5, 0, 3, 0, 0, 0, 0, 0, 1, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
First few rows of the triangle:
1;
3, 1;
5, 0, 1;
7, 3, 0, 1;
9, 0, 0, 0, 1;
11, 5, 3, 0, 0, 1;
13, 0, 0, 0, 0, 0, 1;
15, 7, 0, 3, 0, 0, 0, 1;
...
Definition corrected and a(50) split by
Georg Fischer, Jun 08 2023
Original entry on oeis.org
1, -2, 1, -3, 0, 1, 0, -2, 0, 1, -5, 0, 0, 0, 1, 6, -3, -2, 0, 0, 1, -7, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 1, 0, 0, -3, 0, 0, 0, 0, 0, 1, 10, -5, 0, 0, -2, 0, 0, 0, 0, 1
Offset: 1
First few rows of the triangle:
1;
-2, 1;
-3, 0, 1;
0, -2, 0, 1;
-5, 0, 0, 0, 1;
6, -3, -2, 0, 0, 1;
-7, 0, 0, 0, 0, 0, 1;
...
-
nn = 10; s = 0; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k == 1, -Sum[t[n, k + i]/(i + 1)^(s - 1), {i, 1, n - 1}], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]; Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Mar 12 2016 *)
A143239
Triangle read by rows, A126988 * A128407 as infinite lower triangular matrices.
Original entry on oeis.org
1, 2, -1, 3, 0, -1, 4, -2, 0, 0, 5, 0, 0, 0, -1, 6, -3, -2, 0, 0, 1, 7, 0, 0, 0, 0, 0, -1, 8, -4, 0, 0, 0, 0, 0, 0, 9, 0, -3, 0, 0, 0, 0, 0, 0, 10, -5, 0, 0, -2, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 12, -6, -4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 14, -7, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1
Offset: 1
First few rows of the triangle are:
1;
2, -1;
3, 0, -1;
4, -2, 0, 0;
5, 0, 0, 0, -1;
6, -3, -2, 0, 0, 1;
7, 0, 0, 0, 0, 0, -1;
8, -4, 0, 0, 0, 0, 0, 0;
9, 0, -3, 0, 0, 0, 0, 0, 0;
10, -5, 0, 0, -2, 0, 0, 0, 0, 1;
11, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1;
12, -6, -4, 0, 0, 2, 0, 0, 0, 0, 0, 0;
13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1;
14, -7, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1;
...
Row 12 = (12, -6, -4, 0, 0, 2, 0, 0, 0, 0, 0, 0) since (Cf. A126988 - the divisors of 12 are (12, 6, 4, 3, 0, 2, 0, 0, 0, 0, 0, 1) and applying mu(k) * (nonzero terms), we get (1*12, (-1)*6, (-1)*4, 1*2) sum = 4 = phi(12).
- Ronald L. Graham, Donald E. Knuth & Oren Patashnik, "Concrete Mathematics" 2nd ed.; Addison-Wesley, 1994, p. 137.
-
A143239:= func< n,k | (n mod k) eq 0 select MoebiusMu(k)*(n/k) else 0 >;
[A143239(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Sep 12 2024
-
A143239[n_, k_]:= If[Mod[n,k]==0, MoebiusMu[k]*(n/k), 0];
Table[A143239[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Sep 12 2024 *)
-
def A143239(n,k): return moebius(k)*(n//k) if (n%k)==0 else 0
flatten([[A143239(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Sep 12 2024
Original entry on oeis.org
1, 0, 288, -1736, 4890, 0, -16660, 44576, -103869, 0, 534744, -499968, -577582, 0, 1408320, 2507344, -6905730, 0, 10661648, -8489040, -4798080, 0, 18643548, 12837888, -25207475, 0, -77183496, 28921760, 128406978, 0, -52842796, -151328128, 154006272, 0, -81467400
Offset: 1
-
nmax = 40;
M = Table[If[Mod[n, m] == 0, n/m, 0], {n, 1, nmax}, {m, 1, nmax}];
MatrixPower[M, 12].RamanujanTau[Range[nmax]] (* Jean-François Alcover, Sep 20 2019 *)
-
seq(n, k=12)={my(u=vector(n,n,n), v=vector(n,n,ramanujantau(n))); for(i=1, k, v=dirmul(u,v)); v} \\ Andrew Howroyd, Aug 03 2018
A128489
Triangle read by rows: A000012 * A126988 as infinite lower triangular matrices.
Original entry on oeis.org
1, 3, 1, 6, 1, 1, 10, 3, 1, 1, 15, 3, 1, 1, 1, 21, 6, 3, 1, 1, 1, 28, 6, 3, 1, 1, 1, 1, 36, 10, 3, 3, 1, 1, 1, 1, 45, 10, 6, 3, 1, 1, 1, 1, 1, 55, 15, 6, 3, 3, 1, 1, 1, 1, 1, 66, 15, 6, 3, 3, 1, 1, 1, 1, 1, 1, 78, 21, 10, 6, 3, 3, 1, 1, 1, 1, 1, 1, 91, 21, 10, 6, 3, 3, 1, 1, 1, 1, 1, 1, 1
Offset: 1
First few rows of the triangle:
1;
3, 1;
6, 1, 1;
10, 3, 1, 1;
15, 3, 1, 1, 1;
21, 6, 3, 1, 1, 1;
28, 6, 3, 1, 1, 1, 1;
36, 10, 3, 3, 1, 1, 1, 1;
45, 10, 6, 3, 1, 1, 1, 1, 1;
...
a(11) = 1 inserted and more terms from
Georg Fischer, May 29 2023
Original entry on oeis.org
1, 4, 2, 9, 0, 3, 16, 8, 0, 4, 25, 0, 0, 0, 5, 36, 18, 12, 0, 0, 6, 49, 0, 0, 0, 0, 0, 7, 64, 32, 0, 16, 0, 0, 0, 8, 81, 0, 27, 0, 0, 0, 0, 0, 9, 100, 50, 0, 0, 20, 0, 0, 0, 0, 10, 121, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 144, 72, 48, 36, 0, 24, 0, 0, 0, 0, 0, 12, 169, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13
Offset: 1
First few rows of the triangle =
1;
4, 2;
9, 0, 3;
16, 8, 0, 4;
25, 0, 0, 0, 5;
36, 18, 12, 0, 0, 6;
49, 0, 0, 0, 0, 0, 7;
64, 32, 0, 16, 0, 0, 0, 8;
...
A167990
Elements in A126988 (by row) that are not 1.
Original entry on oeis.org
0, 2, 0, 3, 0, 0, 4, 2, 0, 0, 5, 0, 0, 0, 0, 6, 3, 2, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 8, 4, 0, 2, 0, 0, 0, 0, 9, 0, 3, 0, 0, 0, 0, 0, 0, 10, 5, 0, 0, 2, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 6, 4, 3, 0, 2, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 7, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Table begins:
0;
2, 0;
3, 0, 0;
4, 2, 0, 0;
5, 0, 0, 0, 0;
6, 3, 2, 0, 0, 0;
7, 0, 0, 0, 0, 0, 0;
8, 4, 0, 2, 0, 0, 0, 0;
9, 0, 3, 0, 0, 0, 0, 0, 0;
10, 5, 0, 0, 2, 0, 0, 0, 0, 0;
11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
12, 6, 4, 3, 0, 2, 0, 0, 0, 0, 0, 0;
-
[k eq n or (n mod k) ne 0 select 0 else n/k: k in [1..n], n in [1..15]]; // G. C. Greubel, Jan 13 2023
-
Table[If[k==n || Mod[n, k]!=0, 0, n/k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 13 2023 *)
-
def A167990(n, k):
if (k==n or n%k!=0): return 0
else: return n/k
flatten([[A167990(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jan 13 2023
Showing 1-10 of 61 results.
Comments