cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 61 results. Next

A127013 Triangle read by rows: row reversal of A126988.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 0, 2, 4, 1, 0, 0, 0, 5, 1, 0, 0, 2, 3, 6, 1, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 2, 0, 4, 8, 1, 0, 0, 0, 0, 0, 3, 0, 9, 1, 0, 0, 0, 0, 2, 0, 0, 5, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 2, 0, 3, 4, 6, 12, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13
Offset: 1

Views

Author

Gary W. Adamson, Jan 02 2007

Keywords

Comments

Let j = reversed indices of row terms. Then for any row, j*T(n,k) = n, for nonzero T(n,k). For example, in row 10, we match the terms with their j indices: (1, 0, 0, 0, 0, 2, 0, 0, 5, 10), (dot product) (10, 9, 8, 7, 6, 5, 4, 3, 2, 1); getting (10, 0, 0, 0, 0, 10, 0, 0, 10, 10).
The factors of n are found in each row in order, as nonzero terms; e.g., 10 has the factors 1, 2, 5, 10, sum 18.
Row sums = sigma(n), A000203.

Examples

			First few rows of the triangle are:
   1;
   1, 2;
   1, 0, 3;
   1, 0, 2, 4;
   1, 0, 0, 0, 5;
   1, 0, 0, 2, 3, 6;
   1, 0, 0, 0, 0, 0, 7;
   1, 0, 0, 0, 2, 0, 4, 8;
   1, 0, 0, 0, 0, 0, 3, 0, 9;
   1, 0, 0, 0, 0, 2, 0, 0, 5, 10;
Row 10 = (1, 0, 0, 0, 0, 2, 0, 0, 5, 10), reversal of 10th row of A126988.
		

References

  • David Wells, "Prime Numbers, The Most Mysterious Figures in Math", John Wiley & Sons, 2005, Appendix.

Crossrefs

Programs

  • Haskell
    a127013 n k = a127013_tabl !! (n-1) !! (k-1)
    a127013_row n = a127013_tabl !! (n-1)
    a127013_tabl = map reverse a126988_tabl
    -- Reinhard Zumkeller, Jan 20 2014
    
  • Magma
    [[(n mod (n-k+1)) eq 0 select n/(n-k+1) else 0: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 03 2019
    
  • Mathematica
    T[n_,m_]:= If[Mod[n, m]==0, n/m, 0]; Table[T[n,n-m+1], {n, 1, 12}, {m, 1, n}]//Flatten (* G. C. Greubel, Jun 03 2019 *)
  • PARI
    {T(n, k) = if(n%k==0, n/k, 0)};
    for(n=1,12, for(k=1,n, print1(T(n,n-k+1), ", "))) \\ G. C. Greubel, Jun 03 2019
    
  • Sage
    def T(n, k):
        if (n%k==0): return n/k
        else: return 0
    [[T(n, n-k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 03 2019

Extensions

T(10,10) fixed by Reinhard Zumkeller, Jan 20 2014
More terms added by G. C. Greubel, Jun 03 2019

A127097 Triangle T(n,m) = A127093 * A126988 read by rows.

Original entry on oeis.org

1, 5, 2, 10, 0, 3, 21, 10, 0, 4, 26, 0, 0, 0, 5, 50, 20, 15, 0, 0, 6, 50, 0, 0, 0, 0, 0, 7, 85, 42, 0, 20, 0, 0, 0, 8, 91, 0, 30, 0, 0, 0, 0, 0, 9, 130, 52, 0, 0, 25, 0, 0, 0, 0, 10, 122, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 210, 100, 63, 40, 0, 30, 0, 0, 0, 0, 0, 12, 170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 05 2007

Keywords

Comments

Multiply the infinite lower triangular matrices A127093 and A126988.

Examples

			First few rows of the triangle are:
1;
5, 2;
10, 0, 3;
21, 10, 0, 4;
26, 0, 0, 0, 5;
50, 20, 15, 0, 0, 6;
50, 0, 0, 0, 0, 0, 7;
...
		

Crossrefs

Programs

  • Maple
    A127093 := proc(n,m) if n mod m = 0 then m; else 0 ; fi; end:
    A126988 := proc(n,k) if n mod k = 0 then n/k; else 0; fi; end:
    A127097 := proc(n,m) add( A127093(n,j)*A126988(j,m),j=m..n) ; end:
    for n from 1 to 15 do for m from 1 to n do printf("%d,",A127097(n,m)) ; od: od: # R. J. Mathar, Aug 18 2009

Formula

T(n,m) = sum_{j=m..n} A127093(n,j)*A126988(j,m).
T(n,1) = A001157(n).

Extensions

A-numbers corrected by R. J. Mathar, Aug 18 2009

A127099 Triangle T(n,m) = A126988 *A127093 read by rows.

Original entry on oeis.org

1, 3, 2, 4, 0, 3, 7, 6, 0, 4, 6, 0, 0, 0, 5, 12, 8, 9, 0, 0, 6, 8, 0, 0, 0, 0, 0, 7, 15, 14, 0, 12, 0, 0, 0, 8, 13, 0, 12, 0, 0, 0, 0, 0, 9, 18, 12, 0, 0, 15, 0, 0, 0, 0, 10, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 28, 24, 21, 16, 0, 18, 0, 0, 0, 0, 0, 12, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 24, 16, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 05 2007

Keywords

Comments

Multiply the infinite lower triangular matrices A126988 and A127093.

Examples

			First few rows of the triangle are:
1;
3, 2;
4, 0, 3;
7, 6, 0, 4;
6, 0, 0, 0, 5;
12, 8, 9, 0, 0, 6;
8, 0, 0, 0, 0, 0, 7;
15, 14, 0, 12, 0, 0, 0, 8;
13, 0, 12, 0, 0, 0, 0, 0, 9;
18, 12, 0, 0, 15, 0, 0, 0, 0, 10;
...
		

Crossrefs

Formula

T(n,m) = sum_{j=m..n} A126988(n,j)*A127093(j,m).
T(n,1) = A000203(n).

Extensions

Extended by R. J. Mathar, Aug 18 2009

A143315 Triangle read by rows: T(n, k) = 2*A126988(n, k) - signum(A126988(n, k)).

Original entry on oeis.org

1, 3, 1, 5, 0, 1, 7, 3, 0, 1, 9, 0, 0, 0, 1, 11, 5, 3, 0, 0, 1, 13, 0, 0, 0, 0, 0, 1, 15, 7, 0, 3, 0, 0, 0, 1, 17, 0, 5, 0, 0, 0, 0, 0, 1, 19, 9, 0, 0, 3, 0, 0, 0, 0, 1, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 23, 11, 7, 5, 0, 3, 0, 0, 0, 0, 0, 1, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 06 2008

Keywords

Comments

Row sums = A129235: (1, 4, 6, 11, 10, 20, 14,...).

Examples

			First few rows of the triangle:
   1;
   3, 1;
   5, 0, 1;
   7, 3, 0, 1;
   9, 0, 0, 0, 1;
  11, 5, 3, 0, 0, 1;
  13, 0, 0, 0, 0, 0, 1;
  15, 7, 0, 3, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

By columns, replace the 1's in A051731 in succession with (1, 3, 5, 7,...).

Extensions

Definition corrected and a(50) split by Georg Fischer, Jun 08 2023

A127139 Inverse triangle of A126988.

Original entry on oeis.org

1, -2, 1, -3, 0, 1, 0, -2, 0, 1, -5, 0, 0, 0, 1, 6, -3, -2, 0, 0, 1, -7, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 1, 0, 0, -3, 0, 0, 0, 0, 0, 1, 10, -5, 0, 0, -2, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 06 2007

Keywords

Comments

Row sums give A023900.
Left column is A055615.
A127139 * [1, 2, 3, ...] = [1, 0, 0, 0, ...].
A127139 * [1, 0, 0, 0, ...] = A055615.
A127140 is the square of A127139.

Examples

			First few rows of the triangle:
   1;
  -2,  1;
  -3,  0,  1;
   0, -2,  0, 1;
  -5,  0,  0, 0, 1;
   6, -3, -2, 0, 0, 1;
  -7,  0,  0, 0, 0, 0, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    nn = 10; s = 0; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k == 1, -Sum[t[n, k + i]/(i + 1)^(s - 1), {i, 1, n - 1}], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]; Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Mar 12 2016 *)

Formula

Inverse triangle of A126988.

A143239 Triangle read by rows, A126988 * A128407 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, -1, 3, 0, -1, 4, -2, 0, 0, 5, 0, 0, 0, -1, 6, -3, -2, 0, 0, 1, 7, 0, 0, 0, 0, 0, -1, 8, -4, 0, 0, 0, 0, 0, 0, 9, 0, -3, 0, 0, 0, 0, 0, 0, 10, -5, 0, 0, -2, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 12, -6, -4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 14, -7, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 01 2008

Keywords

Comments

Row sums = A000010, phi(n): (1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4,...); as a consequence of the Dedekind-Liouville rule illustrated in the example and on p. 137 of "Concrete Mathematics".

Examples

			First few rows of the triangle are:
   1;
   2, -1;
   3,  0, -1;
   4, -2,  0,  0;
   5,  0,  0,  0, -1;
   6, -3, -2,  0,  0,  1;
   7,  0,  0,  0,  0,  0, -1;
   8, -4,  0,  0,  0,  0,  0,  0;
   9,  0, -3,  0,  0,  0,  0,  0,  0;
  10, -5,  0,  0, -2,  0,  0,  0,  0,  1;
  11,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1;
  12, -6, -4,  0,  0,  2,  0,  0,  0,  0,  0,  0;
  13,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1;
  14, -7,  0,  0,  0,  0, -2,  0,  0,  0,  0,  0,  0,  1;
  ...
Row 12 = (12, -6, -4, 0, 0, 2, 0, 0, 0, 0, 0, 0) since (Cf. A126988 - the divisors of 12 are (12, 6, 4, 3, 0, 2, 0, 0, 0, 0, 0, 1) and applying mu(k) * (nonzero terms), we get (1*12, (-1)*6, (-1)*4, 1*2) sum = 4 = phi(12).
		

References

  • Ronald L. Graham, Donald E. Knuth & Oren Patashnik, "Concrete Mathematics" 2nd ed.; Addison-Wesley, 1994, p. 137.

Crossrefs

Cf. A000010 (row sums), A008683, A126988, A128407.

Programs

  • Magma
    A143239:= func< n,k | (n mod k) eq 0 select MoebiusMu(k)*(n/k) else 0 >;
    [A143239(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Sep 12 2024
    
  • Mathematica
    A143239[n_, k_]:= If[Mod[n,k]==0, MoebiusMu[k]*(n/k), 0];
    Table[A143239[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Sep 12 2024 *)
  • SageMath
    def A143239(n,k): return moebius(k)*(n//k) if (n%k)==0 else 0
    flatten([[A143239(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Sep 12 2024

Formula

Triangle read by rows generated from the Dedekind-Liouville rule: T(n,k) = mu(k)*(n/k) if k divides n, otherwise T(n,k) = 0 if k is not a divisor of n.
Equals A126988 * A128407.

A128392 A126988^12 * A000594.

Original entry on oeis.org

1, 0, 288, -1736, 4890, 0, -16660, 44576, -103869, 0, 534744, -499968, -577582, 0, 1408320, 2507344, -6905730, 0, 10661648, -8489040, -4798080, 0, 18643548, 12837888, -25207475, 0, -77183496, 28921760, 128406978, 0, -52842796, -151328128, 154006272, 0, -81467400
Offset: 1

Views

Author

Gary W. Adamson, Feb 28 2007

Keywords

Comments

Conjecture: Given A126988^k, k any positive integer, A128392 is the only sequence in the infinite set with zeros.
Each application of A126988 corresponds to the Dirichlet convolution of the natural numbers with the sequence on the right. Since both Ramanujan's tau function A000594 and the natural numbers are multiplicative, the resulting sequence will also be multiplicative. - Andrew Howroyd, Aug 03 2018

Crossrefs

Programs

  • Mathematica
    nmax = 40;
    M = Table[If[Mod[n, m] == 0, n/m, 0], {n, 1, nmax}, {m, 1, nmax}];
    MatrixPower[M, 12].RamanujanTau[Range[nmax]] (* Jean-François Alcover, Sep 20 2019 *)
  • PARI
    seq(n, k=12)={my(u=vector(n,n,n), v=vector(n,n,ramanujantau(n))); for(i=1, k, v=dirmul(u,v)); v} \\ Andrew Howroyd, Aug 03 2018

Formula

A126988 as an infinite lower triangular matrix, * A000594.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 03 2018

A128489 Triangle read by rows: A000012 * A126988 as infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 1, 6, 1, 1, 10, 3, 1, 1, 15, 3, 1, 1, 1, 21, 6, 3, 1, 1, 1, 28, 6, 3, 1, 1, 1, 1, 36, 10, 3, 3, 1, 1, 1, 1, 45, 10, 6, 3, 1, 1, 1, 1, 1, 55, 15, 6, 3, 3, 1, 1, 1, 1, 1, 66, 15, 6, 3, 3, 1, 1, 1, 1, 1, 1, 78, 21, 10, 6, 3, 3, 1, 1, 1, 1, 1, 1, 91, 21, 10, 6, 3, 3, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Mar 04 2007

Keywords

Comments

Row sums = A024916: (1, 4, 8, 15, 21, 33, ...).

Examples

			First few rows of the triangle:
   1;
   3,  1;
   6,  1, 1;
  10,  3, 1, 1;
  15,  3, 1, 1, 1;
  21,  6, 3, 1, 1, 1;
  28,  6, 3, 1, 1, 1, 1;
  36, 10, 3, 3, 1, 1, 1, 1;
  45, 10, 6, 3, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Formula

By columns, k=1,2,3,...; k repeated terms of the triangular series, (1, 3, 6, 10, ...) in the k-th column.

Extensions

a(11) = 1 inserted and more terms from Georg Fischer, May 29 2023

A143311 Triangle read by rows, A127648 * A126988; 1<=k<=n.

Original entry on oeis.org

1, 4, 2, 9, 0, 3, 16, 8, 0, 4, 25, 0, 0, 0, 5, 36, 18, 12, 0, 0, 6, 49, 0, 0, 0, 0, 0, 7, 64, 32, 0, 16, 0, 0, 0, 8, 81, 0, 27, 0, 0, 0, 0, 0, 9, 100, 50, 0, 0, 20, 0, 0, 0, 0, 10, 121, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 144, 72, 48, 36, 0, 24, 0, 0, 0, 0, 0, 12, 169, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13
Offset: 1

Views

Author

Gary W. Adamson, Aug 06 2008

Keywords

Comments

Row sums = A064987, n*sigma(n): (1, 6, 12, 28, 30, 72, 56,...).

Examples

			First few rows of the triangle =
1;
4, 2;
9, 0, 3;
16, 8, 0, 4;
25, 0, 0, 0, 5;
36, 18, 12, 0, 0, 6;
49, 0, 0, 0, 0, 0, 7;
64, 32, 0, 16, 0, 0, 0, 8;
...
		

Crossrefs

Formula

Triangle read by rows, A127648 * A126988; 1<=k<=n

A167990 Elements in A126988 (by row) that are not 1.

Original entry on oeis.org

0, 2, 0, 3, 0, 0, 4, 2, 0, 0, 5, 0, 0, 0, 0, 6, 3, 2, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 8, 4, 0, 2, 0, 0, 0, 0, 9, 0, 3, 0, 0, 0, 0, 0, 0, 10, 5, 0, 0, 2, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 6, 4, 3, 0, 2, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 7, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mats Granvik, Nov 16 2009

Keywords

Comments

GCD of rows is A014963.

Examples

			Table begins:
   0;
   2, 0;
   3, 0, 0;
   4, 2, 0, 0;
   5, 0, 0, 0, 0;
   6, 3, 2, 0, 0, 0;
   7, 0, 0, 0, 0, 0, 0;
   8, 4, 0, 2, 0, 0, 0, 0;
   9, 0, 3, 0, 0, 0, 0, 0, 0;
  10, 5, 0, 0, 2, 0, 0, 0, 0, 0;
  11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
  12, 6, 4, 3, 0, 2, 0, 0, 0, 0, 0, 0;
		

Crossrefs

Programs

  • Magma
    [k eq n or (n mod k) ne 0 select 0 else n/k: k in [1..n], n in [1..15]]; // G. C. Greubel, Jan 13 2023
    
  • Mathematica
    Table[If[k==n || Mod[n, k]!=0, 0, n/k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jan 13 2023 *)
  • SageMath
    def A167990(n, k):
        if (k==n or n%k!=0): return 0
        else: return n/k
    flatten([[A167990(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jan 13 2023

Formula

From G. C. Greubel, Jan 13 2023: (Start)
T(n, k) = 0 if k = n or (n mod k) != 0, otherwise T(n, k) = n/k.
T(n, 1) = n - [n=1].
T(m*n, n) = m, m >= 2.
Sum_{k=1..n} T(n, k) = A039653(n). (End)
Showing 1-10 of 61 results. Next