cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127262 a(0)=2, a(1)=2, a(n) = 2*a(n-1) + 12*a(n-2).

Original entry on oeis.org

2, 2, 28, 80, 496, 1952, 9856, 43136, 204544, 926720, 4307968, 19736576, 91168768, 419176448, 1932378112, 8894873600, 40978284544, 188695052288, 869129519104, 4002599665664, 18434753560576, 84900703109120
Offset: 0

Views

Author

Miklos Kristof, Mar 27 2007

Keywords

Comments

If A091914(n-1)=F(n) the Fibonacci-like sequence, then a(n) is the Lucas-type sequence.

Crossrefs

Programs

  • Maple
    a[0]:=2:a[1]:=2:for i from 2 to 40 do a[i]:=2*a[i-1]+12*a[i-2] od: seq(a[n],n=0..40);
  • Mathematica
    LinearRecurrence[{2,12},{2,2},30] (* Harvey P. Dale, May 24 2017 *)
  • Sage
    [lucas_number2(n,2,-12) for n in range(0, 22)] # Zerinvary Lajos, Apr 30 2009

Formula

a(n) = ((1+sqrt(13))^n - (1-sqrt(13)^n))/(2*sqrt(13)).
G.f.: 2*(1-x)/(1-2*x-12*x^2).
E.g.f.: exp((1+sqrt(13))*x) + exp((1-sqrt(13))*x).
a(n) = A091914(n) + 12*A091914(n-2).
a(n) = 2*A125816(n). - Alois P. Heinz, Mar 03 2018