cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127336 Numbers that are the sum of 9 consecutive primes.

Original entry on oeis.org

100, 127, 155, 187, 221, 253, 287, 323, 363, 401, 439, 479, 515, 553, 593, 635, 679, 721, 763, 803, 841, 881, 929, 977, 1025, 1067, 1115, 1163, 1213, 1267, 1321, 1367, 1415, 1459, 1511, 1555, 1601, 1643, 1691, 1747, 1801, 1851, 1903, 1951, 1999, 2053
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

a(n) = absolute value of coefficient of x^8 of the polynomial Product_{j=0..8}(x - prime(n+j)) of degree 9; the roots of this polynomial are prime(n), ..., prime(n+8).

Crossrefs

Programs

  • Magma
    [&+[ NthPrime(n+k): k in [0..8] ]: n in [1..100] ]; // Vincenzo Librandi, Apr 03 2011
    
  • Mathematica
    A127336 = {}; Do[AppendTo[A127336, Sum[Prime[x + n], {n, 0, 8}]], {x, 1, 50}]; A127336 (* Artur Jasinski, Jan 11 2007 *)
    Table[Plus@@Prime[Range[n, n + 8]], {n, 50}] (* Alonso del Arte, Aug 27 2013 *)
    Total/@Partition[Prime[Range[60]],9,1] (* Harvey P. Dale, Nov 18 2020 *)
  • PARI
    {m=46;k=9;for(n=1,m,print1(a=sum(j=0,k-1,prime(n+j)),","))} \\ Klaus Brockhaus, Jan 13 2007
    {m=46;k=9;for(n=1,m,print1(abs(polcoeff(prod(j=0,k-1,(x-prime(n+j))),k-1)),","))} \\ Klaus Brockhaus, Jan 13 2007
    
  • Python
    from sympy import prime
    def a(x): return sum([prime(x + n) for n in range(9)])
    print([a(i) for i in range(1, 50)]) # Indranil Ghosh, Mar 18 2017

Formula

a(n) = A127335(n)+A000040(n+8). - R. J. Mathar, Apr 24 2023

Extensions

Edited by Klaus Brockhaus, Jan 13 2007