cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127337 Numbers that are the sum of 10 consecutive primes.

Original entry on oeis.org

129, 158, 192, 228, 264, 300, 340, 382, 424, 468, 510, 552, 594, 636, 682, 732, 780, 824, 870, 912, 954, 1008, 1060, 1114, 1164, 1216, 1266, 1320, 1376, 1434, 1494, 1546, 1596, 1650, 1704, 1752, 1800, 1854, 1914, 1974, 2030, 2084, 2142, 2192, 2250, 2310, 2374
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

a(n) is the absolute value of coefficient of x^9 of the polynomial Product_{j=0..9} (x - prime(n+j)) of degree 10; the roots of this polynomial are prime(n), ..., prime(n+9).

Crossrefs

Programs

  • Magma
    [&+[ NthPrime(n+k): k in [0..9] ]: n in [1..90] ]; // Vincenzo Librandi, Apr 03 2011
    
  • Maple
    A127337 := proc(n)
        local i ;
        add(ithprime(n+i),i=0..9) ;
    end proc:
    seq(A127337(n),n=1..30) ; # R. J. Mathar, Apr 24 2023
  • Mathematica
    a = {}; Do[AppendTo[a, Sum[Prime[x + n], {n, 0, 9}]], {x, 1, 50}]; a
    Table[Plus@@Prime[Range[n, n + 9]], {n, 50}] (* Alonso del Arte, Feb 15 2011 *)
    ListConvolve[ConstantArray[1, 10], Prime[Range[50]]]
    Total/@Partition[Prime[Range[60]],10,1] (* Harvey P. Dale, Jan 31 2013 *)
  • PARI
    {m=46;k=10;for(n=1,m,print1(a=sum(j=0,k-1,prime(n+j)),","))} \\ Klaus Brockhaus, Jan 13 2007
    
  • PARI
    {m=46;k=10;for(n=1,m,print1(abs(polcoeff(prod(j=0,k-1,(x-prime(n+j))),k-1)),","))} \\ Klaus Brockhaus, Jan 13 2007
    
  • Python
    from sympy import prime
    def a(n): return sum(prime(n + i) for i in range(10))
    print([a(n) for n in range(1, 48)]) # Michael S. Branicky, Dec 09 2021
    
  • Python
    # faster version for generating initial segment of sequence
    from sympy import nextprime
    def aupton(terms):
        alst, plst = [], [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
        for n in range(terms):
            alst.append(sum(plst))
            plst = plst[1:] + [nextprime(plst[-1])]
        return alst
    print(aupton(47)) # Michael S. Branicky, Dec 09 2021

Formula

a(n) = A127336(n)+A000040(n+9). - R. J. Mathar, Apr 24 2023

Extensions

Edited by Klaus Brockhaus, Jan 13 2007