A127736 a(n) = n*(n^2 + 2*n - 1)/2.
1, 7, 21, 46, 85, 141, 217, 316, 441, 595, 781, 1002, 1261, 1561, 1905, 2296, 2737, 3231, 3781, 4390, 5061, 5797, 6601, 7476, 8425, 9451, 10557, 11746, 13021, 14385, 15841, 17392, 19041, 20791, 22645, 24606, 26677, 28861, 31161, 33580, 36121, 38787, 41581
Offset: 1
Examples
From _Wesley Ivan Hurt_, May 18 2021: (Start) Add all the numbers in the top row and last column. [1 2 3 4 5] [1 2 3 4] [6 7 8 9 10] [1 2 3] [5 6 7 8] [11 12 13 14 15] [1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20] [1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25] ------------------------------------------------------------------------ n 1 2 3 4 5 ------------------------------------------------------------------------ a(n) 1 7 21 46 85 ------------------------------------------------------------------------ (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Maple
A127736:=n->n*(n^2+2*n-1)/2; seq(A127736(n), n=1..40); # Wesley Ivan Hurt, Mar 14 2014
-
Mathematica
Table[n*(n^2 + 2*n - 1)/2, {n, 60}] (* Vladimir Joseph Stephan Orlovsky, Jun 24 2011 *) CoefficientList[Series[-(x^2 - 3 x - 1)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 14 2014 *) LinearRecurrence[{4,-6,4,-1},{1,7,21,46},60] (* Harvey P. Dale, Apr 22 2014 *)
-
PARI
Vec(-x*(x^2-3*x-1)/(x-1)^4 + O(x^100)) \\ Colin Barker, Mar 12 2014
-
PARI
a(n) = n*(n^2+2*n-1)/2; \\ Altug Alkan, Jan 07 2016
Formula
Row sums of triangle A131416. Also, binomial transform of [1, 6, 8, 3, 0, 0, 0, ...). - Gary W. Adamson, Oct 23 2007
From Colin Barker, Mar 12 2014: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: -x*(x^2-3*x-1) / (x-1)^4. (End)
a(n) = A057145(n+5,n). - R. J. Mathar, Jul 28 2016
Extensions
More terms and new name from R. J. Mathar, Jul 21 2009
Comments