cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127736 a(n) = n*(n^2 + 2*n - 1)/2.

Original entry on oeis.org

1, 7, 21, 46, 85, 141, 217, 316, 441, 595, 781, 1002, 1261, 1561, 1905, 2296, 2737, 3231, 3781, 4390, 5061, 5797, 6601, 7476, 8425, 9451, 10557, 11746, 13021, 14385, 15841, 17392, 19041, 20791, 22645, 24606, 26677, 28861, 31161, 33580, 36121, 38787, 41581
Offset: 1

Views

Author

Gary W. Adamson, Jan 26 2007

Keywords

Comments

Row sums of A127735.
Row sums of A162610. - Reinhard Zumkeller, Jan 19 2013
For n > 0, a(n) is the number of compositions of n+10 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
Sum of the numbers in the top row and last column of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows (see example). - Wesley Ivan Hurt, May 18 2021

Examples

			From _Wesley Ivan Hurt_, May 18 2021: (Start)
Add all the numbers in the top row and last column.
                                                      [1   2  3  4  5]
                                      [1   2  3  4]   [6   7  8  9 10]
                            [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                   [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
           [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
------------------------------------------------------------------------
  n         1        2         3            4                 5
------------------------------------------------------------------------
  a(n)      1        7        21           46                85
------------------------------------------------------------------------
(End)
		

Crossrefs

Programs

Formula

Row sums of triangle A131416. Also, binomial transform of [1, 6, 8, 3, 0, 0, 0, ...). - Gary W. Adamson, Oct 23 2007
a(n) = (n+1)*A000217(n) - n = A006002(n) - n. - R. J. Mathar, Jul 21 2009
From Colin Barker, Mar 12 2014: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: -x*(x^2-3*x-1) / (x-1)^4. (End)
a(n) = A057145(n+5,n). - R. J. Mathar, Jul 28 2016

Extensions

More terms and new name from R. J. Mathar, Jul 21 2009