cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A055578 "Non-generous primes": primes p whose least positive primitive root is not a primitive root of p^2.

Original entry on oeis.org

2, 40487, 6692367337
Offset: 1

Views

Author

Bernard Leak (bernard(AT)brenda-arkle.demon.co.uk), Aug 24 2000

Keywords

Comments

For r a primitive root of a prime p, r + qp is a primitive root of p: but r + qp is also a primitive root of p^2, except for q in some unique residue class modulo p. In the exceptional case, r + qp has order p-1 modulo p^2 (Burton, section 8.3).
No other terms below 10^12 (Paszkiewicz, 2009).
Each term p is a Wieferich prime to base A046145(p). For example, a(2) and a(3) are base-5 Wieferich (see A123692). - Jeppe Stig Nielsen, Mar 06 2020

References

  • David Burton, Elementary Number Theory, Allyn and Bacon, Boston, 1976, first edition (cf. Section 8.3).

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range[7!], ! PrimitiveRoot[#] == PrimitiveRoot[#^2] &] (* Arkadiusz Wesolowski, Sep 06 2012 *)

Formula

Prime A000040(n) is in this sequence iff A001918(n)^(A000040(n)-1) == 1 (mod A000040(n)^2).
Prime A000040(n) is in this sequence iff A001918(n) differs from A127807(n).

Extensions

a(3) from Stephen Glasby (Stephen.Glasby(AT)cwu.EDU), Apr 22 2001
Edited by Max Alekseyev, Nov 10 2011

A127808 Least positive primitive root of (n-th prime)^3.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 6, 3, 3, 2, 3, 2, 2, 6, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 6, 3, 7, 7, 6, 3, 5, 2, 6, 5, 3, 3, 2, 5, 17, 10, 2, 3, 10, 2, 2, 3, 7, 6, 2, 2, 5, 2, 5, 3, 21, 2, 2, 7, 5, 15, 2, 3, 13, 2, 3, 2, 13, 3, 2, 7, 5, 2, 3, 2, 2
Offset: 2

Views

Author

Artur Jasinski, Jan 29 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimitiveRoot[(Prime[n])^3], {n, 2, 100}]
    PrimitiveRoot[Prime[Range[2,100]]^3] (* Harvey P. Dale, May 07 2013 *)

A127809 Least positive primitive root of (n-th prime)^4.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 6, 3, 3, 2, 3, 2, 2, 6, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 6, 3, 7, 7, 6, 3, 5, 2, 6, 5, 3, 3, 2, 5, 17, 10, 2, 3, 10, 2, 2, 3, 7, 6, 2, 2, 5, 2, 5, 3, 21, 2, 2, 7, 5, 15, 2, 3, 13, 2, 3, 2, 13, 3, 2, 7, 5, 2, 3, 2, 2
Offset: 2

Views

Author

Artur Jasinski, Jan 29 2007

Keywords

Crossrefs

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions` Table[PrimitiveRoot[(Prime[n])^4], {n, 2, 100}]
    Table[PrimitiveRoot[Prime[n]^4],{n,2,100}] (* Primitive Root is now part of the core functions in Mathematica *) (* Harvey P. Dale, Oct 11 2017 *)

A127810 Least positive primitive root of (n-th prime)^5.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 6, 3, 3, 2, 3, 2, 2, 6, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 6, 3, 7, 7, 6, 3, 5, 2, 6, 5, 3, 3, 2, 5, 17, 10, 2, 3, 10, 2, 2, 3, 7, 6, 2, 2, 5, 2, 5, 3, 21, 2, 2, 7, 5, 15, 2, 3, 13, 2, 3, 2, 13, 3, 2, 7, 5, 2, 3, 2, 2
Offset: 2

Views

Author

Artur Jasinski, Jan 29 2007

Keywords

Crossrefs

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions` Table[PrimitiveRoot[(Prime[n])^5], {n, 2, 100}]
Showing 1-4 of 4 results.