cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A147985 Coefficients of numerator polynomials S(n,x) associated with reciprocation.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, -3, 0, 1, 1, 0, -7, 0, 13, 0, -7, 0, 1, 1, 0, -15, 0, 83, 0, -220, 0, 303, 0, -220, 0, 83, 0, -15, 0, 1, 1, 0, -31, 0, 413, 0, -3141, 0, 15261, 0, -50187, 0, 115410, 0, -189036, 0, 222621, 0, -189036, 0, 115410, 0, -50187, 0, 15261, 0, -3141, 0, 413, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 24 2008

Keywords

Comments

1. S(n)=U(n-1)V(n-1) where U(n-1)=S(n-1)+S(1)*S(2)*...*S(n-2) and V(n-1)=S(n-1)-S(1)*S(2)*...*S(n-2), for n>=2. If U(n) and V(n) are written as polynomials U(n,x) and V(n,x), then V(n,x)=U(n,-x). See A147989 for coefficients of U(n).
2. S(n)=S(n-1)^2+S(n-1)*S(n-2)^2-S(n-2)^4 for n>2. (The Gorskov-Wirsting polynomials also have this recurrence; see H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics, 84, AMS, pp. 183-190.)
3. For n>0, the 2^(n-1) zeros of S(n) are real. If r is a zero of S(n), then -r and 1/r are zeros of S(n).
4. If r is a zero of S(n), then the numbers z satisfying r=z-1/z and r=z+1/z are zeros of S(n+1).
5. If n>2, then S(n,1)=1 and S(n,2)=A127814(n).
6. S(n,2^(1/2))=-1 for n>2 and S(n,2^(-1/2))=-2^(1-n) for n>1.

Examples

			S(1)=x
S(2)=x^2-1=(x-1)(x+1)
S(3)=x^4-3*x^2+1=(x^2+x-1)(x^2-x-1)
S(4)=x^8-7*x^6+13*x^4-7*x^2+1=(x^4+x^3-3*x^2-x+1)(x^4-x^3-3*x^2+x+1),
so that, as an array, sequence begins with
1 0
1 0 -1
1 0 -3 0 1
1 0 -7 0 13 0 -7 0 1
		

Crossrefs

Programs

  • Mathematica
    s[1] = x; t[1] = 1; s[n_] := s[n] = s[n-1]^2 - t[n-1]^2; t[n_] := t[n] = s[n-1]*t[n-1]; row[n_] := CoefficientList[s[n], x] // Reverse; Table[row[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Apr 22 2013 *)

Formula

The basic idea is to iterate the reciprocation-difference mapping x/y -> x/y-y/x.
Let x be an indeterminate, S(1)=x, T(1)=1 and for n>1, define S(n)=S(n-1)^2-T(n-1)^2 and T(n)=S(n-1)*T(n-1), so that S(n)/T(n)=S(n-1)/T(n-1)-T(n-1)/S(n-1).

A127815 a(n) = denominator of b(n), where b(1) = 2, b(n) = b(n-1) - 1/b(n-1).

Original entry on oeis.org

1, 2, 6, 30, 330, 257070, 128005692870, 23279147893155496537470, 388475314992168993748220639081347493631827670, 102339769648127358726761918460732576814168548432921287355299929744910591862606847215978930
Offset: 1

Views

Author

Leroy Quet, Jan 30 2007

Keywords

Examples

			A127814/A127815 = 2, 3/2, 5/6, -11/30, 779/330, 497941/257070, 181860254581/128005692870, ...
		

Crossrefs

Cf. A127814.

Programs

  • Mathematica
    f[l_List] := Append[l, l[[ -1]] - 1/l[[ -1]]];Denominator[Nest[f, {2}, 10]] (* Ray Chandler, Feb 07 2007 *)

Formula

For n >= 2, a(n) = a(n-1)*A127814(n-1).

Extensions

Extended by Ray Chandler, Feb 07 2007

A242995 a(n) = a(n-1)^2 + a(n-1)*a(n-2)^2 - a(n-2)^4 with a(1) = 2, a(2) = 3.

Original entry on oeis.org

2, 3, 5, -11, -779, 497941, 181860254581, 16687694789137362648661, -263439569256003706800705587722279993788907979
Offset: 1

Views

Author

Michael Somos, Aug 17 2014

Keywords

Crossrefs

Programs

  • Magma
    I:=[2,3]; [n le 2 select I[n] else Self(n-1)^2 + Self(n-1)*Self(n-2)^2 - Self(n-2)^4: n in [1..10]]; // G. C. Greubel, Aug 05 2018
  • Mathematica
    RecurrenceTable[{a[n] == a[n-1]^2 + a[n-1]*a[n-2]^2 - a[n-2]^4, a[1] == 2, a[2] == 3}, a, {n, 1, 10}] (* G. C. Greubel, Aug 05 2018 *)
  • PARI
    {a(n) = if( n<1, 0, if( n<3, n+1, my(x = a(n-2)^2, y = a(n-1)); y^2 + x*y - x^2))};
    

Formula

0 = a(n)^2*(a(n+1) - a(n)^2) - (a(n+2) - a(n+1)^2) for all n>0.
abs(a(n)) = abs(A127814(n)) for all n>0.
a(n) = A242996(n+1) / A242996(n) for all n>0.

A125676 a(n) = floor(abs(b(n))), where b(1) = 2, b(n) = b(n-1) - 1/b(n-1).

Original entry on oeis.org

2, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 3, 3, 3, 2, 2, 1, 1, 0, 1, 0, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 22, 22, 22, 22, 22, 22, 22, 22
Offset: 1

Views

Author

Leroy Quet, Jan 30 2007

Keywords

Crossrefs

Programs

  • Mathematica
    f[l_List] := Append[l, l[[ -1]] - 1/l[[ -1]]];Floor /@ Abs /@ Nest[f, {2}, 30] (* Ray Chandler, Feb 08 2007 *)
  • PARI
    lista(nn) = my(b=2); print1(2); for(n=2, nn, print1(", ", floor(abs(b-=1/b)))); \\ Jinyuan Wang, Aug 10 2021

Extensions

a(9)-a(31) from Ray Chandler, Feb 08 2007
More terms from Jinyuan Wang, Aug 10 2021
Showing 1-4 of 4 results.