cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A127814 a(n) = numerator of b(n), where b(1) = 2, b(n) = b(n-1) - 1/b(n-1).

Original entry on oeis.org

2, 3, 5, -11, 779, 497941, 181860254581, 16687694789137362648661, -263439569256003706800705587722279993788907979, 81512663708476146329709015825571064954724426915346799560162522434680208602364731247764459
Offset: 1

Views

Author

Leroy Quet, Jan 30 2007

Keywords

Comments

Every term of this sequence of numerators is coprime to every other term.

Examples

			A127814/A127815 = 2, 3/2, 5/6, -11/30, 779/330, 497941/257070, 181860254581/128005692870, ...
		

Crossrefs

Programs

  • Mathematica
    f[l_List] := Append[l, l[[ -1]] - 1/l[[ -1]]];Numerator[Nest[f, {2}, 10]] (* Ray Chandler, Feb 07 2007 *)
    Numerator/@NestList[#-1/#&,2,10]  (* Harvey P. Dale, Apr 30 2011 *)

Extensions

Extended by Ray Chandler, Feb 07 2007

A242996 a(n) = (a(n-1)^2 - a(n-2)^4) * a(n-1) / a(n-2)^2 with a(1) = 1, a(2) = 2.

Original entry on oeis.org

1, 2, 6, 30, -330, 257070, 128005692870, 23279147893155496537470, 388475314992168993748220639081347493631827670
Offset: 1

Views

Author

Michael Somos, Aug 17 2014

Keywords

Comments

The next term (a(10)) has 90 digits and a(11) has 178 digits. - Harvey P. Dale, Feb 23 2023

Crossrefs

Programs

  • Magma
    I:=[1,2]; [n le 2 select I[n] else (Self(n-1)^2 - Self(n-2)^2 )/Self(n-2)^2: n in [1..10]]; // G. C. Greubel, Aug 06 2018
  • Mathematica
    RecurrenceTable[{a[n] == (a[n-1]^2 - a[n-2]^4)*a[n-1]/a[n-2]^2, a[1] == 1, a[2] == 2}, a, {n, 1, 10}] (* G. C. Greubel, Aug 06 2018; corrected by Georg Fischer, Dec 07 2023 *)
    nxt[{a_,b_}]:={b,(b^2-a^4) b/a^2}; NestList[nxt,{1,2},10][[;;,1]] (* Harvey P. Dale, Feb 23 2023 *)
  • PARI
    {a(n) = if( n<3, max(0, n), my(x = a(n-2)^2, y = a(n-1)); (y^2 - x^2) * y / x)};
    

Formula

abs(a(n)) = A127815(n).
a(n+1) = a(n) * A242995(n) for all n>0.
0 = a(n)^2*a(n+2) + a(n+1)*(a(n)^4 - a(n+1)^2) for all n>0.

A125676 a(n) = floor(abs(b(n))), where b(1) = 2, b(n) = b(n-1) - 1/b(n-1).

Original entry on oeis.org

2, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 3, 3, 3, 2, 2, 1, 1, 0, 1, 0, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 22, 22, 22, 22, 22, 22, 22, 22
Offset: 1

Views

Author

Leroy Quet, Jan 30 2007

Keywords

Crossrefs

Programs

  • Mathematica
    f[l_List] := Append[l, l[[ -1]] - 1/l[[ -1]]];Floor /@ Abs /@ Nest[f, {2}, 30] (* Ray Chandler, Feb 08 2007 *)
  • PARI
    lista(nn) = my(b=2); print1(2); for(n=2, nn, print1(", ", floor(abs(b-=1/b)))); \\ Jinyuan Wang, Aug 10 2021

Extensions

a(9)-a(31) from Ray Chandler, Feb 08 2007
More terms from Jinyuan Wang, Aug 10 2021
Showing 1-3 of 3 results.