cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A078009 a(0)=1, for n>=1 a(n) = Sum_{k=0..n} 5^k*N(n,k) where N(n,k) = C(n,k)*C(n,k+1)/n are the Narayana numbers (A001263).

Original entry on oeis.org

1, 1, 6, 41, 306, 2426, 20076, 171481, 1500666, 13386206, 121267476, 1112674026, 10318939956, 96572168916, 910896992856, 8650566601401, 82644968321226, 793753763514806, 7659535707782916, 74225795172589006, 722042370787826076
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally coefficients of (1 + m*x - sqrt(m^2*x^2 - (2*m+2)*x + 1) )/( 2*m*x ) are given by a(n) = Sum_{k=0..n} (m+1)^k * N(n,k).
a(n) is the series reversion of x*(1-5*x)/(1-4*x). a(n+1) is the series reversion of x/(1 + 6*x + 5*x^2). a(n+1) counts (6,5)-Motzkin paths of length n, where there are 6 colors available for the H(1,0) steps and 5 for the U(1,1) steps. - Paul Barry, May 19 2005
The Hankel transform of this sequence is 5^C(n+1,2). - Philippe Deléham, Oct 29 2007
a(n) is the number of Schröder paths of semilength n in which there are no (2,0)-steps at level 0 and at a higher level they come in 4 colors. Example: a(2)=6 because we have UDUD, UUDD, UBD, UGD, URD, and UYD, where U=(1,1), D=(1,-1), while B, G, R, and Y are, respectively, blue, green, red, and yellow (2,0)-steps. - Emeric Deutsch, May 02 2011
Shifts left when INVERT transform applied five times. - Benedict W. J. Irwin, Feb 03 2016

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+4*x - Sqrt(16*x^2-12*x+1))/(10*x) )); // G. C. Greubel, Jun 28 2019
    
  • Magma
    [1] cat [&+[5^k*Binomial(n,k)*Binomial(n,k+1)/n:k in [0..n]]:n in [1..20]]; // Marius A. Burtea, Jan 21 2020
    
  • Maple
    A078009_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+5*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a, list) end: A078009_list(20); # Peter Luschny, May 19 2011
  • Mathematica
    Table[SeriesCoefficient[(1+4*x-Sqrt[16*x^2-12*x+1])/(10*x),{x,0,n}],{n,0,30}] (* Vaclav Kotesovec, Oct 13 2012 *)
    a[n_] := Hypergeometric2F1[1 - n, -n, 2, 5];
    Table[a[n], {n, 0, 30}] (* Peter Luschny, Mar 19 2018 *)
  • PARI
    a(n)=sum(k=0,n,5^k/n*binomial(n,k)*binomial(n,k+1))
    
  • Sage
    a=((1+4*x -sqrt(16*x^2-12*x+1))/(10*x)).series(x, 30).coefficients(x, sparse=False); [1]+a[1:] # G. C. Greubel, Jun 28 2019

Formula

G.f.: (1 + 4*x - sqrt(16*x^2 - 12*x + 1))/(10*x).
a(n) = Sum_{k=0..n} A088617(n, k)*5^k*(-4)^(n-k). - Philippe Deléham, Jan 21 2004
With offset 1 : a(1)=1, a(n) = -4*a(n-1) + 5*Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
a(n+1) = Sum_{k=0..floor(n/2)} C(n, 2*k)*C(k)*6^(n-2k)*5^k; - Paul Barry, May 19 2005
a(n) = ( 6*(2*n-1)*a(n-1) - 16*(n-2)*a(n-2) ) / (n+1) for n >= 2, a(0) = a(1) = 1. - Philippe Deléham, Aug 19 2005
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, M = the production matrix:
1, 1
5, 5, 5
1, 1, 1, 1
5, 5, 5, 5, 5
1, 1, 1, 1, 1, 1
... (End)
a(n) ~ sqrt(10+6*sqrt(5))*(6+2*sqrt(5))^n/(10*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012. Equivalently, a(n) ~ 2^(2*n) * phi^(2*n + 1) / (5^(3/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
a(n) = A127848(n) for n > 0. - Philippe Deléham, Apr 03 2013
G.f.: 1/(1 - x/(1 - 5*x/(1 - x/(1 - 5*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Apr 21 2017
a(n) = hypergeom([1 - n, -n], [2], 5). - Peter Luschny, Mar 19 2018

A127849 a(n) = 5^C(n,2)*(5^n-1)/4.

Original entry on oeis.org

0, 1, 30, 3875, 2437500, 7626953125, 119201660156250, 9313106536865234375, 3637969493865966796875000, 7105423719622194766998291015625, 69388931933644926175475120544433593750
Offset: 0

Views

Author

Paul Barry, Feb 02 2007

Keywords

Comments

-a(n) is the Hankel transform of A127848, the series reversion of x/(1+6*x+5*x^2). Note that (5^n-1)/4 has g.f. x/(1-6*x+5*x^2).
(-1)^n*a(n) is the Hankel transform of the series reversion of x*(1+4*x)/(1+2*x-3*x^2). - Paul Barry, Jul 12 2008

Crossrefs

Cf. A127848.

Programs

  • Mathematica
    Table[5^Binomial[n,2] (5^n-1)/4,{n,0,20}] (* Harvey P. Dale, Dec 31 2022 *)
Showing 1-2 of 2 results.