cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127883 a(n) = 60*(n^5/120 + n^4/24 + n^3/6 + n^2/2 + n + 1).

Original entry on oeis.org

163, 436, 1104, 2572, 5485, 10788, 19786, 34204, 56247, 88660, 134788, 198636, 284929, 399172, 547710, 737788, 977611, 1276404, 1644472, 2093260, 2635413, 3284836, 4056754, 4967772, 6035935, 7280788, 8723436, 10386604, 12294697
Offset: 1

Views

Author

Artur Jasinski, Feb 04 2007

Keywords

Comments

Generating polynomial is Schur's polynomial of 5-degree. Schur's polynomials n degree are n-th first term of series expansion of e^x function. All polynomials are non-reducible and belonging to the An alternating Galois transitive group if n is divisible by 4 or to Sn symmetric Galois Group in other case (proof Schur, 1930).

Crossrefs

Programs

  • Magma
    [n^4*(n+5)/2+10*(n^3+3*n^2+6*n+6): n in [1..30]]; // Bruno Berselli, Apr 03 2012
  • Maple
    A127883:=n->60*(n^5/120 + n^4/24 + n^3/6 + n^2/2 + n + 1); seq(A127883(n), n=1..40); # Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    Table[1/2 (120+x (120+x (60+x (20+x (5+x))))), {x,40}] (* Harvey P. Dale, Mar 12 2011 *)
    CoefficientList[Series[(163 - 542 x + 933 x^2 - 772 x^3 + 338 x^4 - 60 x^5)/(1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 28 2014 *)

Formula

G.f.: x*(163-542*x+933*x^2-772*x^3+338*x^4-60*x^5)/(1-x)^6. - Colin Barker, Apr 02 2012