cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127893 Riordan array (1/(1-x)^3, x/(1-x)^3).

Original entry on oeis.org

1, 3, 1, 6, 6, 1, 10, 21, 9, 1, 15, 56, 45, 12, 1, 21, 126, 165, 78, 15, 1, 28, 252, 495, 364, 120, 18, 1, 36, 462, 1287, 1365, 680, 171, 21, 1, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1, 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1
Offset: 0

Views

Author

Paul Barry, Feb 04 2007

Keywords

Comments

Inverse is A127894.
From Peter Bala, Jul 22 2014: (Start)
Let M denote the unsigned version of the lower unit triangular array A122432 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End)

Examples

			Triangle begins
   1;
   3,    1;
   6,    6,     1;
  10,   21,     9,     1;
  15,   56,    45,    12,     1;
  21,  126,   165,    78,    15,     1;
  28,  252,   495,   364,   120,    18,     1;
  36,  462,  1287,  1365,   680,   171,    21,    1;
  45,  792,  3003,  4368,  3060,  1140,   231,   24,   1;
  55, 1287,  6435, 12376, 11628,  5985,  1771,  300,  27,  1;
  66, 2002, 12870, 31824, 38760, 26334, 10626, 2600, 378, 30, 1;
  ...
From _Peter Bala_, Jul 22 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
  / 1         \/1         \/1       \       / 1       \
  | 3  1      ||0  1      ||0 1      |      | 3  1    |
  | 6  3 1    ||0  3 1    ||0 0 1    |... = | 6  6 1  |
  |10  6 3 1  ||0  6 3 1  ||0 0 3 1  |      |10 21 9 1|
  |15 10 6 3 1||0 10 6 3 1||0 0 6 3 1|      |...      |
  |...        ||...       ||...      |      |...      |
(End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Binomial(n+2*k+2,n-k)))); # Muniru A Asiru, Apr 30 2018
    
  • Magma
    [Binomial(n+2*k+2, n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Apr 29 2018
    
  • Maple
    seq(seq(binomial(n+2*k+2,n-k),k=0..n),n=0..10); # Robert Israel, Apr 28 2015
  • Mathematica
    Flatten@ Table[Binomial[n+2k-1, n-k], {n, 10}, {k, n}] (* Michael De Vlieger, Apr 27 2015 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n+2*k+2, n-k), ", "))) \\ G. C. Greubel, Apr 29 2018
    
  • Sage
    flatten([[binomial(n+2*k+2,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021

Formula

T(n,k) = binomial(n+2*k+2, n-k).
Sum_{k=0..n} T(n, k) = A052529(n+1) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A095263(n+1) (diagonal sums).
Recurrence: T(n+1, k+1) = Sum_{i = 0..n-k} binomial(i+2, 2)*T(n-i,k). - Peter Bala, Jul 22 2014
G.f.: 1/((1-x)^3-x*y). - Vladimir Kruchinin, Apr 27 2015