A127893 Riordan array (1/(1-x)^3, x/(1-x)^3).
1, 3, 1, 6, 6, 1, 10, 21, 9, 1, 15, 56, 45, 12, 1, 21, 126, 165, 78, 15, 1, 28, 252, 495, 364, 120, 18, 1, 36, 462, 1287, 1365, 680, 171, 21, 1, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1, 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1
Offset: 0
Examples
Triangle begins 1; 3, 1; 6, 6, 1; 10, 21, 9, 1; 15, 56, 45, 12, 1; 21, 126, 165, 78, 15, 1; 28, 252, 495, 364, 120, 18, 1; 36, 462, 1287, 1365, 680, 171, 21, 1; 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1; 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1; 66, 2002, 12870, 31824, 38760, 26334, 10626, 2600, 378, 30, 1; ... From _Peter Bala_, Jul 22 2014: (Start) With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins / 1 \/1 \/1 \ / 1 \ | 3 1 ||0 1 ||0 1 | | 3 1 | | 6 3 1 ||0 3 1 ||0 0 1 |... = | 6 6 1 | |10 6 3 1 ||0 6 3 1 ||0 0 3 1 | |10 21 9 1| |15 10 6 3 1||0 10 6 3 1||0 0 6 3 1| |... | |... ||... ||... | |... | (End)
Links
- G. C. Greubel, Rows n = 0..99, flattened
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
Programs
-
GAP
Flat(List([0..10],n->List([0..n],k->Binomial(n+2*k+2,n-k)))); # Muniru A Asiru, Apr 30 2018
-
Magma
[Binomial(n+2*k+2, n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Apr 29 2018
-
Maple
seq(seq(binomial(n+2*k+2,n-k),k=0..n),n=0..10); # Robert Israel, Apr 28 2015
-
Mathematica
Flatten@ Table[Binomial[n+2k-1, n-k], {n, 10}, {k, n}] (* Michael De Vlieger, Apr 27 2015 *)
-
PARI
for(n=0,10, for(k=0,n, print1(binomial(n+2*k+2, n-k), ", "))) \\ G. C. Greubel, Apr 29 2018
-
Sage
flatten([[binomial(n+2*k+2,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021
Formula
T(n,k) = binomial(n+2*k+2, n-k).
Sum_{k=0..n} T(n, k) = A052529(n+1) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A095263(n+1) (diagonal sums).
Recurrence: T(n+1, k+1) = Sum_{i = 0..n-k} binomial(i+2, 2)*T(n-i,k). - Peter Bala, Jul 22 2014
G.f.: 1/((1-x)^3-x*y). - Vladimir Kruchinin, Apr 27 2015
Comments