A095263
a(n+3) = 3*a(n+2) - 2*a(n+1) + a(n).
Original entry on oeis.org
1, 3, 7, 16, 37, 86, 200, 465, 1081, 2513, 5842, 13581, 31572, 73396, 170625, 396655, 922111, 2143648, 4983377, 11584946, 26931732, 62608681, 145547525, 338356945, 786584466, 1828587033, 4250949112, 9882257736, 22973462017, 53406819691
Offset: 1
a(9) = 1081 = 3*465 - 2*200 + 86.
M^9 * [1 0 0] = [a(7) a(8) a(9)] = [200 465 1081].
G.f. = x + 3*x^2 + 7*x^3 + 16*x^4 + 37*x^5 + 86*x^6 + 200*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. R. Dedrickson III, Compositions, Bijections, and Enumerations Thesis, Jack N. Averitt College of Graduate Studies, Georgia Southern University, 2012.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
-
I:=[1,3,7]; [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 12 2021
-
A:= gfun:-rectoproc({a(n+3)=3*a(n+2)-2*a(n+1)+a(n),a(1)=1,a(2)=3,a(3)=7},a(n),remember):
seq(A(n),n=1..100); # Robert Israel, Sep 15 2014
-
a[1]=1; a[2]=3; a[3]=7; a[n_]:= a[n]= 3a[n-1] -2a[n-2] +a[n-3]; Table[a[n], {n, 22}] (* Or *)
a[n_]:= (MatrixPower[{{0,1,2,3}, {1,2,3,0}, {2,3,0,1}, {3,0,1,2}}, n].{{1}, {0}, {0}, {0}})[[2, 1]]; Table[ a[n], {n, 22}] (* Robert G. Wilson v, Jun 16 2004 *)
RecurrenceTable[{a[1]==1,a[2]==3,a[3]==7,a[n+3]==3a[n+2]-2a[n+1]+a[n]},a,{n,30}] (* Harvey P. Dale, Sep 17 2022 *)
-
[sum( binomial(n+k+1,3*k+2) for k in (0..(n-1)//2)) for n in (1..30)] # G. C. Greubel, Apr 12 2021
A052529
Expansion of (1-x)^3/(1 - 4*x + 3*x^2 - x^3).
Original entry on oeis.org
1, 1, 4, 13, 41, 129, 406, 1278, 4023, 12664, 39865, 125491, 395033, 1243524, 3914488, 12322413, 38789712, 122106097, 384377665, 1209982081, 3808901426, 11990037126, 37743426307, 118812495276, 374009739309, 1177344897715
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 80.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 , example 14.
- C. R. Dedrickson III, Compositions, Bijections, and Enumerations Thesis, Jack N. Averitt College of Graduate Studies, Georgia Southern University, 2012.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 459
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,1).
-
I:=[1, 1, 4, 13, 41, 129]; [n le 6 select I[n] else 4*Self(n-1) -3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
-
spec := [S,{S=Sequence(Prod(Z,Sequence(Z),Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
f:= gfun:-rectoproc({a(n+4)-4*a(n+3)+3*a(n+2)-a(n+1), a(0) = 1, a(1) = 1, a(2) = 4, a(3) = 13},a(n),`remember`):
seq(f(n),n=0..40); # Robert Israel, Dec 19 2014
-
CoefficientList[Series[(-1+x)^3/(-1+4*x-3*x^2+x^3),{x,0,40}],x] (* Vincenzo Librandi, Jun 22 2012 *)
LinearRecurrence[{4,-3,1},{1,1,4,13},30] (* Harvey P. Dale, Oct 04 2015 *)
-
my(x='x+O('x^30)); Vec((1-x)^3/(1-4*x+3*x^2-x^3)) \\ G. C. Greubel, May 12 2019
-
((1-x)^3/(1-4*x+3*x^2-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A122432
Riordan array (1/(1+x)^3,x).
Original entry on oeis.org
1, -3, 1, 6, -3, 1, -10, 6, -3, 1, 15, -10, 6, -3, 1, -21, 15, -10, 6, -3, 1, 28, -21, 15, -10, 6, -3, 1, -36, 28, -21, 15, -10, 6, -3, 1, 45, -36, 28, -21, 15, -10, 6, -3, 1, -55, 45, -36, 28, -21, 15, -10
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------
0: 1
1 :-3 1
2: 6 -3 1
3: -10 6 -3 1
4: 15 -10 6 -3 1
5; -21 15 -10 6 -3 1
6: 28 -21 15 -10 6 -3 1
7: -36 28 -21 15 -10 6 -3 1
8: 45 -36 28 -21 15 -10 6 -3 1
9: -55 45 -36 28 -21 15 -10 6 -3 1
... reformattet by - _Wolfdieter Lang_, Apr 05 2020
-
/* As triangle */ [[(-1)^(n-k)*Binomial(n-k+2, 2): k in [1..n]]: n in [1..10]]; // G. C. Greubel, Oct 29 2017
-
Table[(-1)^(n - k)*Binomial[n - k + 2, 2], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 29 2017 *)
-
for(n=0,10, for(k=0,n, print1((-1)^(n-k)*binomial(n-k+2,2), ", "))) \\ G. C. Greubel, Oct 29 2017
A127895
Riordan array (1/(1+x)^3, x/(1+x)^3).
Original entry on oeis.org
1, -3, 1, 6, -6, 1, -10, 21, -9, 1, 15, -56, 45, -12, 1, -21, 126, -165, 78, -15, 1, 28, -252, 495, -364, 120, -18, 1, -36, 462, -1287, 1365, -680, 171, -21, 1, 45, -792, 3003, -4368, 3060, -1140, 231, -24, 1, -55, 1287, -6435, 12376, -11628, 5985, -1771, 300, -27, 1
Offset: 0
Triangle begins
1;
-3, 1;
6, -6, 1;
-10, 21, -9, 1;
15, -56, 45, -12, 1;
-21, 126, -165, 78, -15, 1;
28, -252, 495, -364, 120, -18, 1;
-36, 462, -1287, 1365, -680, 171, -21, 1;
45, -792, 3003, -4368, 3060, -1140, 231, -24, 1;
-55, 1287, -6435, 12376, -11628, 5985, -1771, 300, -27, 1;
66, -2002, 12870, -31824, 38760, -26334, 10626, -2600, 378, -30, 1;
Alternating sign version of
A127893.
-
[(-1)^(n-k)*Binomial(n+2*k+2, n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Apr 29 2018
-
# Uses function InvPMatrix from A357585. Adds column 1, 0, 0, ... to the left.
InvPMatrix(10, n -> binomial(3*n, n)/(2*n+1)); # Peter Luschny, Oct 09 2022
-
Table[(-1)^(n-k)*Binomial[n+2*k+2, n-k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 29 2018 *)
-
for(n=0, 10, for(k=0,n, print1((-1)^(n-k)*binomial(n+2*k+2, n-k), ", "))) \\ G. C. Greubel, Apr 29 2018
-
flatten([[(-1)^(n-k)*binomial(n+2*k+2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021
A127894
Inverse of Riordan array (1/(1-x)^3, x/(1-x)^3).
Original entry on oeis.org
1, -3, 1, 12, -6, 1, -55, 33, -9, 1, 273, -182, 63, -12, 1, -1428, 1020, -408, 102, -15, 1, 7752, -5814, 2565, -760, 150, -18, 1, -43263, 33649, -15939, 5313, -1265, 207, -21, 1, 246675, -197340, 98670, -35880, 9750, -1950, 273, -24, 1
Offset: 0
Triangle begins
1,
-3, 1,
12, -6, 1,
-55, 33, -9, 1,
273, -182, 63, -12, 1,
-1428, 1020, -408, 102, -15, 1,
7752, -5814, 2565, -760, 150, -18, 1,
-43263, 33649, -15939, 5313, -1265, 207, -21, 1,
246675, -197340, 98670, -35880, 9750, -1950, 273, -24, 1,
-1430715, 1170585, -610740, 237510, -71253, 16443, -2842, 348, -27, 1,
8414640, -7012200, 3786588, -1553472, 503440, -129456, 26040, -3968, 432, -30, 1
-
Table[If[k == 0, (-1)^(n-1)*Binomial[3*n, n-k]/(2*n+1), (-1)^(n-k-1)*((k + 1)/(n))*Binomial[3*n, n-k-1]], {n, 1, 100}, {k, 0, n-1}] // Flatten (* G. C. Greubel, Apr 29 2018 *)
-
for(n=1,10, for(k=0,n-1, print1(if(k==0, (-1)^(n-1)*binomial(3*n, n-k)/(2*n+1), (-1)^(n-k-1)*((k+1)/n)*binomial(3*n, n-k-1)), ", "))) \\ G. C. Greubel, Apr 29 2018
A206294
Riordan array (1, x/(1-x)^3).
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 6, 6, 1, 0, 10, 21, 9, 1, 0, 15, 56, 45, 12, 1, 0, 21, 126, 165, 78, 15, 1, 0, 28, 252, 495, 364, 120, 18, 1, 0, 36, 462, 1287, 1365, 680, 171, 21, 1, 0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
Offset: 0
Triangle begins:
1
0, 1
0, 3, 1
0, 6, 6, 1
0, 10, 21, 9, 1
0, 15, 56, 45, 12, 1
0, 21, 126, 165, 78, 15, 1
0, 28, 252, 495, 364, 120, 18, 1
0, 36, 462, 1287, 1365, 680, 171, 21, 1
0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
0, 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1
0, 66, 2002, 12870, 31824, 38760, 26324, 10626, 2600, 378, 30, 1
-
# Uses function PMatrix from A357368.
PMatrix(10, n -> n * (n + 1) / 2); # Peter Luschny, Oct 07 2022
-
Table[If[n == 0 && k == 0 , 1, Binomial[n - 1 + 2 k, n - k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 25 2017 *)
-
{T(n,k)=polcoeff(1/(1-x+x*O(x^(n-k)))^(3*k),n-k)}
-
{T(n,k)=polcoeff(polcoeff((1-x)^3/((1-x)^3-y*x +x*O(x^n)),n,x),k,y)}
for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
Showing 1-6 of 6 results.
Comments