cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A001906 F(2n) = bisection of Fibonacci sequence: a(n) = 3*a(n-1) - a(n-2).

Original entry on oeis.org

0, 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, 832040, 2178309, 5702887, 14930352, 39088169, 102334155, 267914296, 701408733, 1836311903, 4807526976, 12586269025, 32951280099, 86267571272, 225851433717, 591286729879, 1548008755920
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term, same as A088305.
Second column of array A102310 and of A028412.
Numbers k such that 5*k^2 + 4 is a square. - Gregory V. Richardson, Oct 13 2002
Apart from initial terms, also Pisot sequences E(3,8), P(3,8), T(3,8). See A008776 for definitions of Pisot sequences.
Binomial transform of A000045. - Paul Barry, Apr 11 2003
Number of walks of length 2n+1 in the path graph P_4 from one end to the other one. Example: a(2)=3 because in the path ABCD we have ABABCD, ABCBCD and ABCDCD. - Emeric Deutsch, Apr 02 2004
Simplest example of a second-order recurrence with the sixth term a square.
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 3. - Lekraj Beedassy, Jun 11 2004
a(n) (for n > 0) is the smallest positive integer that cannot be created by summing at most n values chosen among the previous terms (with repeats allowed). - Andrew Weimholt, Jul 20 2004
All nonnegative integer solutions of Pell equation b(n)^2 - 5*a(n)^2 = +4 together with b(n) = A005248(n), n >= 0. - Wolfdieter Lang, Aug 31 2004
a(n+1) is a Chebyshev transform of 3^n (A000244), where the sequence with g.f. G(x) is sent to the sequence with g.f. (1/(1+x^2))G(x/(1+x^2)). - Paul Barry, Oct 25 2004
a(n) is the number of distinct products of matrices A, B, C, in (A+B+C)^n where commutator [A,B] = 0 but C does not commute with A or B. - Paul D. Hanna and Max Alekseyev, Feb 01 2006
Number of binary words with exactly k-1 strictly increasing runs. Example: a(3)=F(6)=8 because we have 0|0,1|0,1|1,0|01,01|0,1|01,01|1 and 01|01. Column sums of A119900. - Emeric Deutsch, Jul 23 2006
See Table 1 on page 411 of Lukovits and Janezic paper. - Parthasarathy Nambi, Aug 22 2006
Inverse: With phi = (sqrt(5) + 1)/2, log_phi((sqrt(5) a(n) + sqrt(5 a(n)^2 + 4))/2) = n. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007
[1,3,8,21,55,144,...] is the Hankel transform of [1,1,4,17,75,339,1558,...](see A026378). - Philippe Deléham, Apr 13 2007
The Diophantine equation a(n) = m has a solution (for m >= 1) if and only if floor(arcsinh(sqrt(5)*m/2)/log(phi)) <> floor(arccosh(sqrt(5)*m/2)/log(phi)) where phi is the golden ratio. An equivalent condition is A130259(m) = A130260(m). - Hieronymus Fischer, May 25 2007
a(n+1) = AB^(n)(1), n >= 0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 1=`1`, 3=`10`, 8=`100`, 21=`1000`, ..., in Wythoff code.
Equals row sums of triangles A140069, A140736 and A140737. - Gary W. Adamson, May 25 2008
a(n) is also the number of idempotent order-preserving partial transformations (of an n-element chain) of width n (width(alpha) = max(Im(alpha))). Equivalently, it is the number of idempotent order-preserving full transformations (of an n-element chain). - Abdullahi Umar, Sep 08 2008
a(n) is the number of ways that a string of 0,1 and 2 of size (n-1) can be arranged with no 12-pairs. - Udita Katugampola, Sep 24 2008
Starting with offset 1 = row sums of triangle A175011. - Gary W. Adamson, Apr 03 2010
As a fraction: 1/71 = 0.01408450... or 1/9701 = 0.0001030821.... - Mark Dols, May 18 2010
Sum of the products of the elements in the compositions of n (example for n=3: the compositions are 1+1+1, 1+2, 2+1, and 3; a(3) = 1*1*1 + 1*2 + 2*1 + 3 = 8). - Dylon Hamilton, Jun 20 2010, Geoffrey Critzer, Joerg Arndt, Dec 06 2010
a(n) relates to regular polygons with even numbers of edges such that Product_{k=1..(n-2)/2} (1 + 4*cos^2 k*Pi/n) = even-indexed Fibonacci numbers with a(n) relating to the 2*n-gons. The constants as products = roots to even-indexed rows of triangle A152063. For example: a(5) = 55 satisfies the product formula relating to the 10-gon. - Gary W. Adamson, Aug 15 2010
Alternatively, product of roots to x^4 - 12x^3 + 51x^2 - 90x + 55, (10th row of triangle A152063) = (4.618...)*(3.618...)*(2.381...)*(1.381...) = 55. - Gary W. Adamson, Aug 15 2010
a(n) is the number of generalized compositions of n when there are i different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010
Starting with "1" = row sums of triangle A180339, and eigensequence of triangle A137710. - Gary W. Adamson, Aug 28 2010
a(2) = 3 is the only prime.
Number of nonisomorphic graded posets with 0 and uniform hasse graph of rank n > 0, with exactly 2 elements of each rank level above 0. (Uniform used in the sense of Retakh, Serconek, and Wilson. Graded used in Stanley's sense that every maximal chain has the same length n.) - David Nacin, Feb 13 2012
Pisano period lengths: 1, 3, 4, 3, 10, 12, 8, 6, 12, 30, 5, 12, 14, 24, 20, 12, 18, 12, 9, 30, ... - R. J. Mathar, Aug 10 2012
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy + 1. - Michel Lagneau, Feb 01 2014
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2}. - Milan Janjic, Jan 25 2015
With a(0) = 0, for n > 1, a(n) is the smallest number not already in the sequence such that a(n)^2 - a(n-1)^2 is a Fibonacci number. - Derek Orr, Jun 08 2015
Let T be the tree generated by these rules: 0 is in T, and if p is in T, then p + 1 is in T and x*p is in T and y*p is in T. The n-th generation of T consists of A001906(n) polynomials, for n >= 0. - Clark Kimberling, Nov 24 2015
For n > 0, a(n) = exactly the maximum area of a quadrilateral with sides in order of lengths F(n), F(n), L(n), and L(n) with L(n)=A000032(n). - J. M. Bergot, Jan 20 2016
a(n) = twice the area of a triangle with vertices at (L(n+1), L(n+2)), (F(n+1), F(n+1)), and (L(n+2), L(n+1)), with L(n)=A000032(n). - J. M. Bergot, Apr 20 2016
Except for the initial 0, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S - S^2; see A291000. - Clark Kimberling, Aug 24 2017
a(n+1) is the number of spanning trees of the graph T_n, where T_n is a sequence of n triangles, where adjacent triangles share an edge. - Kevin Long, May 07 2018
a(n) is the number of ways to partition [n] such that each block is a run of consecutive numbers, and each block has a fixed point, e.g., for n=3, 12|3 with 1 and 3 as fixed points is valid, but 13|2 is not valid as 1 and 3 do not form a run. Consequently, a(n) also counts the spanning trees of the graph given by taking a path with n vertices and adding another vertex adjacent to all of them. - Kevin Long, May 11 2018
From Wolfdieter Lang, May 31 2018: (Start)
The preceding comment can be paraphrased as follows. a(n) is the row sum of the array A305309 for n >= 1. The array A305309(n, k) gives the sum of the products of the block lengths of the set partition of [n] := {1, 2, ..., n} with A048996(n, k) blocks of consecutive numbers, corresponding to the compositions obtained from the k-th partition of n in Abramowitz-Stegun order. See the comments and examples at A305309.
{a(n)} also gives the infinite sequence of nonnegative numbers k for which k * ||k*phi|| < 1/sqrt(5), where the irrational number phi = A001622 (golden section), and ||x|| is the absolute value of the difference between x and the nearest integer. See, e.g., the Havil reference, pp. 171-172. (End)
a(n) is the number of tilings of two n X 1 rectangles joined orthogonally at a common end-square (so to have 2n-1 squares in a right-angle V shape) with only 1 X 1 and 2 X 1 tiles. This is a consequence of F(2n) = F(n+1)*F(n) + F(n)*F(n-1). - Nathaniel Gregg, Oct 10 2021
These are the denominators of the upper convergents to the golden ratio, tau; they are also the numerators of the lower convergents (viz. 1/1 < 3/2 < 8/5 < 21/13 < ... < tau < ... 13/8 < 5/3 < 2/1). - Clark Kimberling, Jan 02 2022
For n > 1, a(n) is the smallest Fibonacci number of unit equilateral triangle tiles needed to make an isosceles trapezoid of height F(n) triangles. - Kiran Ananthpur Bacche, Sep 01 2024

Examples

			G.f. = x + 3*x^2 + 8*x^3 + 21*x^4 + 55*x^5 + 144*x^6 + 377*x^7 + 987*x^8 + ...
a(3) = 8 because there are exactly 8 idempotent order-preserving full transformations on a 3-element chain, namely: (1,2,3)->(1,1,1),(1,2,3)->(2,2,2),(1,2,3)->(3,3,3),(1,2,3)->(1,1,3),(1,2,3)->(2,2,3),(1,2,3)->(1,2,2),(1,2,3)->(1,3,3),(1,2,3)->(1,2,3)-mappings are coordinate-wise. - _Abdullahi Umar_, Sep 08 2008
		

References

  • Mohammad K. Azarian, The Generating Function for the Fibonacci Sequence, Missouri Journal of Mathematical Sciences, Vol. 2, No. 2, Spring 1990, pp. 78-79. Zentralblatt MATH, Zbl 1097.11516.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 2,5,6,14,33,55.
  • R. J. Douglas, Tournaments that admit exactly one Hamiltonian cycle, Proc. London Math. Soc., 21 (1970), 716-730.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • A. Gerardin, Reply to Query 4389, L'Intermédiaire des Mathématiciens, 22 (1915), 23.
  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 171-172.
  • Howie, J. M. Combinatorial and probabilistic results in transformation semigroups. Words, languages and combinatorics, II (Kyoto, 1992), 200--206, World Sci. Publ., River Edge, NJ, (1994).
  • Laradji, A. and Umar, A. Combinatorial results for semigroups of order-preserving full transformations. Semigroup Forum 72 (2006), 51-62.
  • I. Lukovits, A. Graovac, E. Kalman, G. Kaptay, P. Nagy, S. Nikolic, J. Sytchev and N. Trinajstich, "Nanotubes: Number of Kekulé Structures and Aromaticity", J. Chem. Inf. Comput. Sci, vol. 43 (2003), pp. 609-614. See Equation 6 on page 611.
  • T. Mansour, M. Shattuck, A statistic on n-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 127-140.
  • H. Mathieu, Query 3932, L'Intermédiaire des Mathématiciens, 18 (1911), 222. - N. J. A. Sloane, Mar 08 2022
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 101.
  • Paulo Ribenboim, Primes in Lucas sequences (Chap 4), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 27.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Fibonacci A000045 = union of this sequence and A001519.
Inverse sequences A130259 and A130260.

Programs

  • Haskell
    a001906 n = a001906_list !! n
    a001906_list =
       0 : 1 : zipWith (-) (map (* 3) $ tail a001906_list) a001906_list
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Magma
    [Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Sep 10 2014
  • Maple
    with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S, card > 0), S=Sequence(U, card > 1), U=Sequence(Z, card >0)}, unlabeled]: seq(count(SeqSeqSeqL, size=n+1), n=0..28); # Zerinvary Lajos, Apr 04 2009
    H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4):
    a := n -> `if`(n = 0, 0, H(2*n, 1, 1/2)):
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 03 2019
    A001906 := proc(n)
        combinat[fibonacci](2*n) ;
    end proc:
    seq(A001906(n),n=0..20) ; # R. J. Mathar, Jan 11 2024
  • Mathematica
    f[n_] := Fibonacci[2n]; Array[f, 28, 0] (* or *)
    LinearRecurrence[{3, -1}, {0, 1}, 28] (* Robert G. Wilson v, Jul 13 2011 *)
    Take[Fibonacci[Range[0,60]],{1,-1,2}] (* Harvey P. Dale, May 23 2012 *)
    Table[ ChebyshevU[n-1, 3/2], {n, 0, 30}] (* Jean-François Alcover, Jan 25 2013, after Michael Somos *)
    CoefficientList[Series[(x)/(1 - 3x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 10 2014 *)
  • Maxima
    makelist(fib(2*n),n,0,30); /* Martin Ettl, Oct 21 2012 */
    
  • MuPAD
    numlib::fibonacci(2*n) $ n = 0..35; // Zerinvary Lajos, May 09 2008
    
  • PARI
    {a(n) = fibonacci(2*n)}; /* Michael Somos, Dec 06 2002 */
    
  • PARI
    {a(n) = subst( poltchebi(n+1)*4 - poltchebi(n)*6, x, 3/2)/5}; /* Michael Somos, Dec 06 2002 */
    
  • PARI
    {a(n) = polchebyshev( n-1, 2, 3/2)}; /* Michael Somos Jun 18 2011 */
    
  • PARI
    Vec(x/(1-3*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Oct 24 2012
    
  • Python
    def a(n, adict={0:0, 1:1}):
        if n in adict:
            return adict[n]
        adict[n]=3*a(n-1) - a(n-2)
        return adict[n] # David Nacin, Mar 04 2012
    
  • Sage
    [lucas_number1(n,3,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [fibonacci(2*n) for n in range(0, 28)] # Zerinvary Lajos, May 15 2009
    

Formula

G.f.: x / (1 - 3*x + x^2). - Simon Plouffe in his 1992 dissertation
a(n) = 3*a(n-1) - a(n-2) = A000045(2*n).
a(n) = -a(-n).
a(n) = A060921(n-1, 0), n >= 1.
a(n) = sqrt((A005248(n)^2 - 4)/5).
a(n) = A007598(n) - A007598(n-2), n > 1.
a(n) = (ap^n - am^n)/(ap-am), with ap := (3+sqrt(5))/2, am := (3-sqrt(5))/2.
Invert transform of natural numbers: a(n) = Sum_{k=1..n} k*a(n-k), a(0) = 1. - Vladeta Jovovic, Apr 27 2001
a(n) = S(n-1, 3) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the 2nd kind, see A049310.
a(n) = Sum_{k=0..n} binomial(n, k)*F(k). - Benoit Cloitre, Sep 03 2002
Limit_{n->infinity} a(n)/a(n-1) = 1 + phi = (3 + sqrt(5))/2. This sequence includes all of the elements of A033888 combined with A033890.
a(0)=0, a(1)=1, a(2)=3, a(n)*a(n-2) + 1 = a(n-1)^2. - Benoit Cloitre, Dec 06 2002
a(n) = n + Sum_{k=0..n-1} Sum_{i=0..k} a(i) = n + A054452(n). - Benoit Cloitre, Jan 26 2003
a(n) = Sum_{k=1..n} binomial(n+k-1, n-k). - Vladeta Jovovic, Mar 23 2003
E.g.f.: (2/sqrt(5))*exp(3*x/2)*sinh(sqrt(5)*x/2). - Paul Barry, Apr 11 2003
Second diagonal of array defined by T(i, 1) = T(1, j) = 1, T(i, j) = Max(T(i-1, j) + T(i-1, j-1); T(i-1, j-1) + T(i, j-1)). - Benoit Cloitre, Aug 05 2003
a(n) = F(n)*L(n) = A000045(n)*A000032(n). - Lekraj Beedassy, Nov 17 2003
F(2n+2) = 1, 3, 8, ... is the binomial transform of F(n+2). - Paul Barry, Apr 24 2004
Partial sums of A001519(n). - Lekraj Beedassy, Jun 11 2004
a(n) = Sum_{i=0..n-1} binomial(2*n-1-i, i)*5^(n-i-1)*(-1)^i. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n) = Sum_{k=0..n} binomial(n+k, n-k-1) = Sum_{k=0..n} binomial(n+k, 2k+1).
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*3^(n-2*k). - Paul Barry, Oct 25 2004
a(n) = (n*L(n) - F(n))/5 = Sum_{k=0..n-1} (-1)^n*L(2*n-2*k-1).
The i-th term of the sequence is the entry (1, 2) in the i-th power of the 2 X 2 matrix M = ((1, 1), (1, 2)). - Simone Severini, Oct 15 2005
Computation suggests that this sequence is the Hankel transform of A005807. The Hankel transform of {a(n)} is Det[{{a(1), ..., a(n)}, {a(2), ..., a(n+1)}, ..., {a(n), ..., a(2n-1)}}]. - John W. Layman, Jul 21 2000
a(n+1) = (A005248(n+1) - A001519(n))/2. - Creighton Dement, Aug 15 2004
a(n+1) = Sum_{i=0..n} Sum_{j=0..n} binomial(n-i, j)*binomial(n-j, i). - N. J. A. Sloane, Feb 20 2005
a(n) = (2/sqrt(5))*sinh(2*n*psi), where psi:=log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, Apr 24 2007
a(n) = ((phi+1)^n - A001519(n))/phi with phi=(1+sqrt(5))/2. - Reinhard Zumkeller, Nov 22 2007
Row sums of triangle A135871. - Gary W. Adamson, Dec 02 2007
a(n)^2 = Sum_{k=1..n} a(2*k-1). This is a property of any sequence S(n) such that S(n) = B*S(n-1) - S(n-2) with S(0) = 0 and S(1) = 1 including {0,1,2,3,...} where B = 2. - Kenneth J Ramsey, Mar 23 2008
a(n) = 1/sqrt(5)*(phi^(2*n+2) - phi^(-2*n-2)), where phi = (1+sqrt(5))/2, the golden ratio. - Udita Katugampola (SIU), Sep 24 2008
If p[i] = i and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, May 02 2010
If p[i] = Stirling2(i,2) and if A is the Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n-1) = det(A). - Milan Janjic, May 08 2010
a(n) = F(2*n+10) mod F(2*n+5).
a(n) = 1 + a(n-1) + Sum_{i=1..n-1} a(i), with a(0)=0. - Gary W. Adamson, Feb 19 2011
a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 3's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
a(n), n > 1 is equal to the determinant of an (n-x) X (n-1) tridiagonal matrix with 3's in the main diagonal, 1's in the super and subdiagonals, and the rest 0's. - Gary W. Adamson, Jun 27 2011
a(n) = b such that Integral_{x=0..Pi/2} sin(n*x)/(3/2-cos(x)) dx = c + b*log(3). - Francesco Daddi, Aug 01 2011
a(n+1) = Sum_{k=0..n} A101950(n,k)*2^k. - Philippe Deléham, Feb 10 2012
G.f.: A(x) = x/(1-3*x+x^2) = G(0)/sqrt(5); where G(k)= 1 -(a^k)/(1 - b*x/(b*x - 2*(a^k)/G(k+1))), a = (7-3*sqrt(5))/2, b = 3+sqrt(5), if |x|<(3-sqrt(5))/2 = 0.3819660...; (continued fraction 3 kind, 3-step ). - Sergei N. Gladkovskii, Jun 25 2012
a(n) = 2^n*b(n;1/2) = -b(n;-1), where b(n;d), n=0,1,...,d, denote the delta-Fibonacci numbers defined in comments to A000045 (see also Witula's et al. papers). - Roman Witula, Jul 12 2012
Product_{n>=1} (1 + 1/a(n)) = 1 + sqrt(5). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = (1/6)*(1 + sqrt(5)). - Peter Bala, Dec 23 2012
G.f.: x/(1-2*x) + x^2/(1-2*x)/(Q(0)-x) where Q(k) = 1 - x/(x*k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 23 2013
G.f.: G(0)/2 - 1, where G(k) = 1 + 1/( 1 - x/(x + (1-x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: x*G(0)/(2-3*x), where G(k) = 1 + 1/( 1 - x*(5*k-9)/(x*(5*k-4) - 6/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
Sum_{n>=1} 1/(a(n) + 1/a(n)) = 1. Compare with A001519, A049660 and A049670. - Peter Bala, Nov 29 2013
a(n) = U(n-1,3/2) where U(n-1,x) is Chebyshev polynomial of the second kind. - Milan Janjic, Jan 25 2015
The o.g.f. A(x) satisfies A(x) + A(-x) + 6*A(x)*A(-x) = 0. The o.g.f. for A004187 equals -A(sqrt(x))*A(-sqrt(x)). - Peter Bala, Apr 02 2015
For n > 1, a(n) = (3*F(n+1)^2 + 2*F(n-2)*F(n+1) - F(n-2)^2)/4. - J. M. Bergot, Feb 16 2016
For n > 3, a(n) = floor(MA) - 4 for n even and floor(MA) + 5 for n odd. MA is the maximum area of a quadrilateral with lengths of sides in order L(n), L(n), F(n-3), F(n+3), with L(n)=A000032(n). The ratio of the longer diagonal to the shorter approaches 5/3. - J. M. Bergot, Feb 16 2016
a(n+1) = Sum_{j=0..n} Sum_{k=0..j} binomial(n-j,k)*binomial(j,k)*2^(j-k). - Tony Foster III, Sep 18 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} C(k+i,k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = Sum_{k=1..A000041(n)} A305309(n, k), n >= 1. Also row sums of triangle A078812.- Wolfdieter Lang, May 31 2018
a(n) = H(2*n, 1, 1/2) for n > 0 where H(n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4). - Peter Luschny, Sep 03 2019
Sum_{n>=1} 1/a(n) = A153386. - Amiram Eldar, Oct 04 2020
a(n) = A249450(n) + 2. - Leo Tavares, Oct 10 2021
a(n) = -2/(sqrt(5)*tan(2*arctan(phi^(2*n)))), where phi = A001622 is the golden ratio. - Diego Rattaggi, Nov 21 2021
a(n) = sinh(2*n*arcsinh(1/2))/sqrt(5/4). - Peter Luschny, May 21 2022
From Amiram Eldar, Dec 02 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1 + 1/sqrt(5) (A344212).
Product_{n>=2} (1 + (-1)^n/a(n)) = (5/6) * (1 + 1/sqrt(5)). (End)
a(n) = Sum_{k>=0} Fibonacci(2*n*k)/(Lucas(2*n)^(k+1)). - Diego Rattaggi, Jan 12 2025
Sum_{n>=0} a(n)/3^n = 3. - Diego Rattaggi, Jan 20 2025

A000930 Narayana's cows sequence: a(0) = a(1) = a(2) = 1; thereafter a(n) = a(n-1) + a(n-3).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961, 8407925
Offset: 0

Views

Author

Keywords

Comments

Named after a 14th-century Indian mathematician. [The sequence first appeared in the book "Ganita Kaumudi" (1356) by the Indian mathematician Narayana Pandita (c. 1340 - c. 1400). - Amiram Eldar, Apr 15 2021]
Number of compositions of n into parts 1 and 3. - Joerg Arndt, Jun 25 2011
A Lamé sequence of higher order.
Could have begun 1,0,0,1,1,1,2,3,4,6,9,... (A078012) but that would spoil many nice properties.
Number of tilings of a 3 X n rectangle with straight trominoes.
Number of ways to arrange n-1 tatami mats in a 2 X (n-1) room such that no 4 meet at a point. For example, there are 6 ways to cover a 2 X 5 room, described by 11111, 2111, 1211, 1121, 1112, 212.
Equivalently, number of compositions (ordered partitions) of n-1 into parts 1 and 2 with no two 2's adjacent. E.g., there are 6 such ways to partition 5, namely 11111, 2111, 1211, 1121, 1112, 212, so a(6) = 6. [Minor edit by Keyang Li, Oct 10 2020]
This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0...m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..floor(n/m)} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
a(n+2) is the number of n-bit 0-1 sequences that avoid both 00 and 010. - David Callan, Mar 25 2004 [This can easily be proved by the Cluster Method - see for example the Noonan-Zeilberger article. - N. J. A. Sloane, Aug 29 2013]
a(n-4) is the number of n-bit sequences that start and end with 0 but avoid both 00 and 010. For n >= 6, such a sequence necessarily starts 011 and ends 110; deleting these 6 bits is a bijection to the preceding item. - David Callan, Mar 25 2004
Also number of compositions of n+1 into parts congruent to 1 mod m. Here m=3, A003269 for m=4, etc. - Vladeta Jovovic, Feb 09 2005
Row sums of Riordan array (1/(1-x^3), x/(1-x^3)). - Paul Barry, Feb 25 2005
Row sums of Riordan array (1,x(1+x^2)). - Paul Barry, Jan 12 2006
Starting with offset 1 = row sums of triangle A145580. - Gary W. Adamson, Oct 13 2008
Number of digits in A061582. - Dmitry Kamenetsky, Jan 17 2009
From Jon Perry, Nov 15 2010: (Start)
The family a(n) = a(n-1) + a(n-m) with a(n)=1 for n=0..m-1 can be generated by considering the sums (A102547):
1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
1 3 6 10 15 21 28
1 4 10 20
1
------------------------------
1 1 1 2 3 4 6 9 13 19 28 41 60
with (in this case 3) leading zeros added to each row.
(End)
Number of pairs of rabbits existing at period n generated by 1 pair. All pairs become fertile after 3 periods and generate thereafter a new pair at all following periods. - Carmine Suriano, Mar 20 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=3, 2*a(n-3) equals the number of 2-colored compositions of n with all parts >= 3, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
For n>=2, row sums of Pascal's triangle (A007318) with triplicated diagonals. - Vladimir Shevelev, Apr 12 2012
Pisano period lengths of the sequence read mod m, m >= 1: 1, 7, 8, 14, 31, 56, 57, 28, 24, 217, 60, 56, 168, ... (A271953) If m=3, for example, the remainder sequence becomes 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, ... with a period of length 8. - R. J. Mathar, Oct 18 2012
Diagonal sums of triangle A011973. - John Molokach, Jul 06 2013
"In how many ways can a kangaroo jump through all points of the integer interval [1,n+1] starting at 1 and ending at n+1, while making hops that are restricted to {-1,1,2}? (The OGF is the rational function 1/(1 - z - z^3) corresponding to A000930.)" [Flajolet and Sedgewick, p. 373] - N. J. A. Sloane, Aug 29 2013
a(n) is the number of length n binary words in which the length of every maximal run of consecutive 0's is a multiple of 3. a(5) = 4 because we have: 00011, 10001, 11000, 11111. - Geoffrey Critzer, Jan 07 2014
a(n) is the top left entry of the n-th power of the 3X3 matrix [1, 0, 1; 1, 0, 0; 0, 1, 0] or of the 3 X 3 matrix [1, 1, 0; 0, 0, 1; 1, 0, 0]. - R. J. Mathar, Feb 03 2014
a(n-3) is the top left entry of the n-th power of any of the 3 X 3 matrices [0, 1, 0; 0, 1, 1; 1, 0, 0], [0, 0, 1; 1, 1, 0; 0, 1, 0], [0, 1, 0; 0, 0, 1; 1, 0, 1] or [0, 0, 1; 1, 0, 0; 0, 1, 1]. - R. J. Mathar, Feb 03 2014
Counts closed walks of length (n+3) on a unidirectional triangle, containing a loop at one of remaining vertices. - David Neil McGrath, Sep 15 2014
a(n+2) equals the number of binary words of length n, having at least two zeros between every two successive ones. - Milan Janjic, Feb 07 2015
a(n+1)/a(n) tends to x = 1.465571... (decimal expansion given in A092526) in the limit n -> infinity. This is the real solution of x^3 - x^2 -1 = 0. See also the formula by Benoit Cloitre, Nov 30 2002. - Wolfdieter Lang, Apr 24 2015
a(n+2) equals the number of subsets of {1,2,..,n} in which any two elements differ by at least 3. - Robert FERREOL, Feb 17 2016
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x. If a positive integer N such that r = N^(1/3) is not an integer, then the number of (not necessarily distinct) integers in g(n) is A000930(n), for n >= 1. (See A274142.) - Clark Kimberling, Jun 13 2016
a(n-3) is the number of compositions of n excluding 1 and 2, n >= 3. - Gregory L. Simay, Jul 12 2016
Antidiagonal sums of array A277627. - Paul Curtz, May 16 2019
a(n+1) is the number of multus bitstrings of length n with no runs of 3 ones. - Steven Finch, Mar 25 2020
Suppose we have a(n) samples, exactly one of which is positive. Assume the cost for testing a mix of k samples is 3 if one of the samples is positive (but you will not know which sample was positive if you test more than 1) and 1 if none of the samples is positive. Then the cheapest strategy for finding the positive sample is to have a(n-3) undergo the first test and then continue with testing either a(n-4) if none were positive or with a(n-6) otherwise. The total cost of the tests will be n. - Ruediger Jehn, Dec 24 2020

Examples

			The number of compositions of 11 without any 1's and 2's is a(11-3) = a(8) = 13. The compositions are (11), (8,3), (3,8), (7,4), (4,7), (6,5), (5,6), (5,3,3), (3,5,3), (3,3,5), (4,4,3), (4,3,4), (3,4,4). - _Gregory L. Simay_, Jul 12 2016
The compositions from the above example may be mapped to the a(8) compositions of 8 into 1's and 3's using this (more generally applicable) method: replace all numbers greater than 3 with a 3 followed by 1's to make the same total, then remove the initial 3 from the composition. Maintaining the example's order, they become (1,1,1,1,1,1,1,1), (1,1,1,1,1,3), (3,1,1,1,1,1), (1,1,1,1,3,1), (1,3,1,1,1,1), (1,1,1,3,1,1), (1,1,3,1,1,1), (1,1,3,3), (3,1,1,3), (3,3,1,1), (1,3,1,3), (1,3,3,1), (3,1,3,1). - _Peter Munn_, May 31 2017
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 8,80.
  • R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [See p. 12, line 3]
  • H. Langman, Play Mathematics. Hafner, NY, 1962, p. 13.
  • David Sankoff and Lani Haque, Power Boosts for Cluster Tests, in Comparative Genomics, Lecture Notes in Computer Science, Volume 3678/2005, Springer-Verlag. - N. J. A. Sloane, Jul 09 2009
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For Lamé sequences of orders 1 through 9 see A000045, this sequence, and A017898 - A017904.
Essentially the same as A068921 and A078012.
See also A001609, A145580, A179070, A214551 (same rule except divide by GCD).
A271901 and A271953 give the period of this sequence mod n.
A120562 has the same recurrence for odd n.

Programs

  • GAP
    a:=[1,1,1];; for n in [4..50] do a[n]:=a[n-1]+a[n-3]; od; a; # Muniru A Asiru, Aug 13 2018
    
  • Haskell
    a000930 n = a000930_list !! n
    a000930_list = 1 : 1 : 1 : zipWith (+) a000930_list (drop 2 a000930_list)
    -- Reinhard Zumkeller, Sep 25 2011
    
  • Magma
    [1,1] cat [ n le 3 select n else Self(n-1)+Self(n-3): n in [1..50] ]; // Vincenzo Librandi, Apr 25 2015
    
  • Maple
    f := proc(r) local t1,i; t1 := []; for i from 1 to r do t1 := [op(t1),0]; od: for i from 1 to r+1 do t1 := [op(t1),1]; od: for i from 2*r+2 to 50 do t1 := [op(t1),t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order
    with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 2)}, unlabeled]: seq(count(SeqSetU, size=j), j=3..40); # Zerinvary Lajos, Oct 10 2006
    A000930 := proc(n)
        add(binomial(n-2*k,k),k=0..floor(n/3)) ;
    end proc: # Zerinvary Lajos, Apr 03 2007
    a:= n-> (<<1|1|0>, <0|0|1>, <1|0|0>>^n)[1,1]:
    seq(a(n), n=0..50); # Alois P. Heinz, Jun 20 2008
  • Mathematica
    a[0] = 1; a[1] = a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 3]; Table[ a[n], {n, 0, 40} ]
    CoefficientList[Series[1/(1 - x - x^3), {x, 0, 45}], x] (* Zerinvary Lajos, Mar 22 2007 *)
    LinearRecurrence[{1, 0, 1}, {1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
    a[n_] := HypergeometricPFQ[{(1 - n)/3, (2 - n)/3, -n/3}, {(1 - n)/ 2, -n/2}, -27/4]; Table[a[n], {n, 0, 43}] (* Jean-François Alcover, Feb 26 2013 *)
    Table[-RootSum[1 + #^2 - #^3 &, 3 #^(n + 2) - 11 #^(n + 3) + 2 #^(n + 4) &]/31, {n, 20}] (* Eric W. Weisstein, Feb 14 2025 *)
  • Maxima
    makelist(sum(binomial(n-2*k,k),k,0,n/3),n,0,18); /* Emanuele Munarini, May 24 2011 */
    
  • PARI
    a(n)=polcoeff(exp(sum(m=1,n,((1+sqrt(1+4*x))^m + (1-sqrt(1+4*x))^m)*(x/2)^m/m)+x*O(x^n)),n) \\ Paul D. Hanna, Oct 08 2009
    
  • PARI
    x='x+O('x^66); Vec(1/(1-(x+x^3))) \\ Joerg Arndt, May 24 2011
    
  • PARI
    a(n)=([0,1,0;0,0,1;1,0,1]^n*[1;1;1])[1,1] \\ Charles R Greathouse IV, Feb 26 2017
    
  • Python
    from itertools import islice
    def A000930_gen(): # generator of terms
        blist = [1]*3
        while True:
            yield blist[0]
            blist = blist[1:]+[blist[0]+blist[2]]
    A000930_list = list(islice(A000930_gen(),30)) # Chai Wah Wu, Feb 04 2022
    
  • SageMath
    @CachedFunction
    def a(n): # A000930
        if (n<3): return 1
        else: return a(n-1) + a(n-3)
    [a(n) for n in (0..80)] # G. C. Greubel, Jul 29 2022

Formula

G.f.: 1/(1-x-x^3). - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{i=0..floor(n/3)} binomial(n-2*i, i).
a(n) = a(n-2) + a(n-3) + a(n-4) for n>3.
a(n) = floor(d*c^n + 1/2) where c is the real root of x^3-x^2-1 and d is the real root of 31*x^3-31*x^2+9*x-1 (c = 1.465571... = A092526 and d = 0.611491991950812...). - Benoit Cloitre, Nov 30 2002
a(n) = Sum_{k=0..n} binomial(floor((n+2k-2)/3), k). - Paul Barry, Jul 06 2004
a(n) = Sum_{k=0..n} binomial(k, floor((n-k)/2))(1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
a(n) = Sum_{k=0..n} binomial((n+2k)/3,(n-k)/3)*(2*cos(2*Pi*(n-k)/3)+1)/3. - Paul Barry, Dec 15 2006
a(n) = term (1,1) in matrix [1,1,0; 0,0,1; 1,0,0]^n. - Alois P. Heinz, Jun 20 2008
G.f.: exp( Sum_{n>=1} ((1+sqrt(1+4*x))^n + (1-sqrt(1+4*x))^n)*(x/2)^n/n ).
Logarithmic derivative equals A001609. - Paul D. Hanna, Oct 08 2009
a(n) = a(n-1) + a(n-2) - a(n-5) for n>4. - Paul Weisenhorn, Oct 28 2011
For n >= 2, a(2*n-1) = a(2*n-2)+a(2*n-4); a(2*n) = a(2*n-1)+a(2*n-3). - Vladimir Shevelev, Apr 12 2012
INVERT transform of (1,0,0,1,0,0,1,0,0,1,...) = (1, 1, 1, 2, 3, 4, 6, ...); but INVERT transform of (1,0,1,0,0,0,...) = (1, 1, 2, 3, 4, 6, ...). - Gary W. Adamson, Jul 05 2012
G.f.: 1/(G(0)-x) where G(k) = 1 - x^2/(1 - x^2/(x^2 - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
G.f.: 1 + x/(G(0)-x) where G(k) = 1 - x^2*(2*k^2 + 3*k +2) + x^2*(k+1)^2*(1 - x^2*(k^2 + 3*k +2))/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 27 2012
a(2*n) = A002478(n), a(2*n+1) = A141015(n+1), a(3*n) = A052544(n), a(3*n+1) = A124820(n), a(3*n+2) = A052529(n+1). - Johannes W. Meijer, Jul 21 2013, corrected by Greg Dresden, Jul 06 2020
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
a(n) = v1*w1^n+v3*w2^n+v2*w3^n, where v1,2,3 are the roots of (-1+9*x-31*x^2+31*x^3): [v1=0.6114919920, v2=0.1942540040 - 0.1225496913*I, v3=conjugate(v2)] and w1,2,3 are the roots of (-1-x^2+x^3): [w1=1.4655712319, w2=-0.2327856159 - 0.7925519925*I, w3=conjugate(w2)]. - Gerry Martens, Jun 27 2015
a(n) = (6*A001609(n+3) + A001609(n-7))/31 for n>=7. - Areebah Mahdia, Jun 07 2020
a(n+6)^2 + a(n+1)^2 + a(n)^2 = a(n+5)^2 + a(n+4)^2 + 3*a(n+3)^2 + a(n+2)^2. - Greg Dresden, Jul 07 2021
a(n) = Sum_{i=(n-7)..(n-1)} a(i) / 2. - Jules Beauchamp, May 10 2025

Extensions

Name expanded by N. J. A. Sloane, Sep 07 2012

A052530 a(n) = 4*a(n-1) - a(n-2), with a(0) = 0, a(1) = 2.

Original entry on oeis.org

0, 2, 8, 30, 112, 418, 1560, 5822, 21728, 81090, 302632, 1129438, 4215120, 15731042, 58709048, 219105150, 817711552, 3051741058, 11389252680, 42505269662, 158631825968, 592022034210, 2209456310872, 8245803209278, 30773756526240
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n-1) and a(n+1) are the solutions for c if b = a(n) in (b^2 + c^2)/(b*c + 1) = 4 and there are no other pairs of solutions apart from consecutive pairs of terms in this sequence. Cf. A061167. - Henry Bottomley, Apr 18 2001
a(n)^2 for n >= 1 gives solutions to A007913(3*x+4) = A007913(x). - Benoit Cloitre, Apr 07 2002
For all terms k of the sequence, 3*k^2 + 4 is a perfect square. Limit_{n->oo} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 06 2002
a(n) = the number of compositions of the integer 2*n into even parts, where each part 2*i comes in 2*i colors. (Dedrickson, Theorem 3.2.6) An example is given below. Cf. A052529, A095263. - Peter Bala, Sep 17 2013
Except for an initial 1, this is the p-INVERT of (1, 1, 1, 1, 1, ...) for p(S) = 1 - 2*S - 2*S^2; see A291000. - Clark Kimberling, Aug 24 2017
a(n+1) is the number of spanning trees of the graph P_n, where P_n is a 2 X n grid with two additional vertices, u and v, where u is adjacent to (1,1) and (2,1), and v is adjacent to (1,n) and (2,n). - Kevin Long, May 04 2018
a(n) is also the output of Tesler's formula for the number of perfect matchings of an m X n Mobius band where m is even and n is odd, specialized to m=2. (The twist is on the length-n side.) - Sarah-Marie Belcastro, Feb 15 2022
In general, values of x and y which satisfy (x^2 + y^2)/(x*y + 1) = k^2 are any two adjacent terms of a second-order recurrence with initial terms 0 and k and signature (k^2,-1). This can also be expressed as a first-order recurrence a(n+1) = (k^2*a(n) + sqrt((k^4-4)*a(n)^2 + 4*k^2))/2, n > 1. - Gary Detlefs, Feb 27 2024

Examples

			Colored compositions. a(2) = 8: There are two compositions of 4 into even parts, namely 4 and 2 + 2. Using primes to indicate the coloring of parts, the 8 colored compositions are 4, 4', 4'', 4''', 2 + 2, 2 + 2', 2' + 2 and 2' + 2'. - _Peter Bala_, Sep 17 2013
		

Crossrefs

Programs

  • Haskell
    a052530 n = a052530_list !! n
    a052530_list =
       0 : 2 : zipWith (-) (map (* 4) $ tail a052530_list) a052530_list
    -- Reinhard Zumkeller, Sep 29 2011
    
  • Magma
    I:=[0,2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 25 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Z,Z),Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    s := sqrt(3): a := n -> ((2-s)^n-(s+2)^n)/(s*(s-2)*(s+2)):
    seq(simplify(a(n)), n=0..24); # Peter Luschny, Apr 28 2020
  • Mathematica
    p=1; c=2; a[0]=0; a[1]=c; a[n_]:=a[n]=p*c^2*a[n-1]-a[n-2]; Table[a[n], {n, 0, 20}]
    NestList[2 # + Sqrt[4 + 3 #^2]&, 0, 200] (* Zak Seidov, Mar 31 2011 *)
    LinearRecurrence[{4, -1}, {0, 2}, 25] (* T. D. Noe, Jan 09 2012 *)
    CoefficientList[Series[2x/(1-4x+x^2),{x,0,30}],x] (* Harvey P. Dale, May 31 2023 *)
  • PARI
    { polya002(p,c,m) = local(v,w,j,a); w=0; print1(w,", "); v=c; print1(v,", "); j=1; while(j<=m,a=p*c^2*v-w; print1(a,", "); w=v; v=a; j++) };
    polya002(1,2,25)
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(2*x/(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
    
  • PARI
    first(n) = n = max(n, 2); my(res = vector(n)); res[1] = 0; res[2] = 2; for(i = 3, n, res[i] = 4 * res[i-1] - res[i-2]); res \\ David A. Corneth, Apr 28 2020
    
  • Sage
    (2*x/(1-4*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019

Formula

G.f.: 2*x/(1 - 4*x + x^2).
Invert transform of even numbers: a(n) = 2*Sum_{k=1..n} k*a(n-k). - Vladeta Jovovic, Apr 27 2001
From Gregory V. Richardson, Oct 06 2002: (Start)
a(n) = Sum_{alpha} -(1/3)*(-1 + 2*alpha)*alpha^(-1 - n), alpha = root of (1 - 4*Z + Z^2).
a(n) = (((2+sqrt(3))^(n+1) - (2-sqrt(3))^(n+1)) - ((2+sqrt(3))^n - (2-sqrt(3))^n) + ((2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1)))/(3*sqrt(3)). (End)
a(n) = A071954(n) - 2. - N. J. A. Sloane, Feb 20 2005
a(n) = (2*sinh(2n*arcsinh(1/sqrt(2))))/sqrt(3). - Herbert Kociemba, Apr 24 2008
a(n) = 2*A001353(n). - R. J. Mathar, Oct 26 2009
a(n) = ((3 - 2*sqrt(3))/3)*(2 - sqrt(3))^(n - 1) + ((3 + 2*sqrt(3))/3)*(2 + sqrt(3))^(n - 1). - Vincenzo Librandi, Nov 20 2010
a(n) = floor((2 + sqrt(3))^n/sqrt(3)). - Zak Seidov, Mar 31 2011
a(n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/sqrt(3). (See Horadam for construction.) - Johannes Boot, Jan 08 2012
a(n) = A217233(n) + A217233(n-1) with A217233(-1) = -1. - Bruno Berselli, Oct 01 2012
a(n) = A001835(n+1) - A001835(n). - Kevin Long, May 04 2018
E.g.f.: (exp((2 + sqrt(3))*x) - exp((2 - sqrt(3))*x))/sqrt(3). - Franck Maminirina Ramaharo, Nov 12 2018
a(n+1) = 2*a(n) + sqrt(3*a(n)^2 + 4), n > 1. - Gary Detlefs, Feb 27 2024

Extensions

More terms from James Sellers, Jun 06 2000
Edited by N. J. A. Sloane, Nov 11 2006
a(0) changed to 0 and entry revised accordingly by Max Alekseyev, Nov 15 2007
Signs in definition corrected by John W. Layman, Nov 20 2007

A095263 a(n+3) = 3*a(n+2) - 2*a(n+1) + a(n).

Original entry on oeis.org

1, 3, 7, 16, 37, 86, 200, 465, 1081, 2513, 5842, 13581, 31572, 73396, 170625, 396655, 922111, 2143648, 4983377, 11584946, 26931732, 62608681, 145547525, 338356945, 786584466, 1828587033, 4250949112, 9882257736, 22973462017, 53406819691
Offset: 1

Views

Author

Gary W. Adamson, May 31 2004

Keywords

Comments

a(n+1) = number of n-tuples over {0,1,2} without consecutive digits. For the general case see A096261.
Diagonal sums of Riordan array (1/(1-x)^3, x/(1-x^3)), A127893. - Paul Barry, Jan 07 2008
The signed variant (-1)^(n+1)*a(n+1) is the bottom right entry of the n-th power of the matrix [[0,1,0],[0,0,1],[-1,-2,-3]]. - Roger L. Bagula, Jul 01 2007
a(n) is the number of generalized compositions of n+1 when there are i^2/2-i/2 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010
Dedrickson (Section 4.1) gives a bijection between colored compositions of n, where each part k has one of binomial(k,2) colors, and 0,1,2 strings of length n-2 without sequential digits (i.e., avoiding 01 and 12). Cf. A052529. - Peter Bala, Sep 17 2013
Except for the initial 0, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S^2 - S^3; see A291000. - Clark Kimberling, Aug 24 2017
For n>1, a(n-1) is the number of ways to split [n] into an unspecified number of intervals and then choose 2 blocks (i.e., subintervals) from each interval. For example, for n=6, a(5)=37 since the number of ways to split [6] into intervals and then select 2 blocks from each interval is C(6,2) + C(4,2)*C(2,2) + C(3,2)*C(3,2) + C(2,2)*C(4,2) + C(2,2)*C(2,2)*C(2,2). - Enrique Navarrete, May 20 2022

Examples

			a(9) = 1081 = 3*465 - 2*200 + 86.
M^9 * [1 0 0] = [a(7) a(8) a(9)] = [200 465 1081].
G.f. = x + 3*x^2 + 7*x^3 + 16*x^4 + 37*x^5 + 86*x^6 + 200*x^7 + ...
		

Crossrefs

Cf. A052921 (first differences), A137229 (partial sums).
Column k=3 of A277666.

Programs

  • Magma
    I:=[1,3,7]; [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 12 2021
    
  • Maple
    A:= gfun:-rectoproc({a(n+3)=3*a(n+2)-2*a(n+1)+a(n),a(1)=1,a(2)=3,a(3)=7},a(n),remember):
    seq(A(n),n=1..100); # Robert Israel, Sep 15 2014
  • Mathematica
    a[1]=1; a[2]=3; a[3]=7; a[n_]:= a[n]= 3a[n-1] -2a[n-2] +a[n-3]; Table[a[n], {n, 22}] (* Or *)
    a[n_]:= (MatrixPower[{{0,1,2,3}, {1,2,3,0}, {2,3,0,1}, {3,0,1,2}}, n].{{1}, {0}, {0}, {0}})[[2, 1]]; Table[ a[n], {n, 22}] (* Robert G. Wilson v, Jun 16 2004 *)
    RecurrenceTable[{a[1]==1,a[2]==3,a[3]==7,a[n+3]==3a[n+2]-2a[n+1]+a[n]},a,{n,30}] (* Harvey P. Dale, Sep 17 2022 *)
  • Sage
    [sum( binomial(n+k+1,3*k+2) for k in (0..(n-1)//2)) for n in (1..30)] # G. C. Greubel, Apr 12 2021

Formula

Let M = the 3 X 3 matrix [0 1 0 / 0 0 1 / 1 -2 3]; then M^n *[1 0 0] = [a(n-2) a(n-1) a(n)].
a(n)/a(n-1) tends to 2.3247179572..., an eigenvalue of M and a root of the characteristic polynomial. [Is that constant equal to 1 + A060006? - Michel Marcus, Oct 11 2014] [Yes, the limit is the root of the equation -1 + 2*x - 3*x^2 + x^3 = 0, after substitution x = y + 1 we have the equation for y: -1 - y + y^3 = 0, y = A060006. - Vaclav Kotesovec, Jan 27 2015]
Related to the Padovan sequence A000931 as follows : a(n)=A000931(3n+4). Also the binomial transform of A000931(n+4).
From Paul Barry, Jul 06 2004: (Start)
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, n-2*k+1).
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, 3*k-1). (End)
From Paul Barry, Jan 07 2008: (Start)
G.f.: x/(1 -3*x +2*x^2 -x^3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k+2,3*k+2).
a(n) = Sum_{k=0..n} binomial(n,k) * Sum_{j=0..floor((k+4)/2)} binomial(j,k-2j+4). (End)
If p[i]=i(i-1)/2 and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=2, a(n-1)=det A. - Milan Janjic, May 02 2010
a(n) = A000931(3*n + 4). - Michael Somos, Sep 18 2012

Extensions

Edited by Paul Barry, Jul 06 2004
Corrected and extended by Robert G. Wilson v, Jun 05 2004

A055991 a(n) is its own 4th difference.

Original entry on oeis.org

1, 5, 19, 69, 250, 907, 3292, 11949, 43371, 157422, 571388, 2073943, 7527704, 27322992, 99173120, 359964521, 1306548149, 4742323107, 17213011605, 62477347458, 226771411939, 823102698260, 2987581397893, 10843899100203
Offset: 1

Views

Author

Henry Bottomley, Jun 02 2000

Keywords

Comments

a(n) is the number of distinct matrix products in (A+B+C+D+E)^n where A,B,C and D all commute with each other, but not with E. - Paul D. Hanna and Max Alekseyev, Feb 01 2006
Row sums of Riordan array (1,1/(1-x)^4). - Paul Barry, Feb 02 2006
Quadrisection of A003269: a(n)=A003269(4n-1). - Paul Barry, Feb 02 2006
From Gary W. Adamson, Apr 23 2009: (Start)
Equals the INVERT transform of the tetrahedral series.
a(4) = 69 = (1, 4, 10) dot (19, 5, 1) + 20; = (19 + 20 + 10) + 20. (End)

Crossrefs

Cf. A055988, A055989, A055990 for the other differences of a(n). See A000079, A001906, A052529 for examples of sequences which are respectively their own first, second and third differences.

Programs

  • Magma
    I:=[1, 5, 19, 69]; [n le 4 select I[n] else 5*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 05 2012
  • Mathematica
    LinearRecurrence[{5,-6,4,-1},{1,5,19,69},30] (* Harvey P. Dale, Feb 27 2013 *)

Formula

a(n) = 5*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) = a(n-1)+A055990(n) = A055988(n+1)-A055988(n) = A055989(n+1)-2*A055989(n)+A055989(n-1).
Letting a(0)=1, we have a(n)=sum(u=0, n-1, sum(v=0, u, sum(w=0, v, sum(x=0, w, a(x))))) for n>0. - Benoit Cloitre, Jan 26 2003
a(n) = sum_{k=1..n} binomial(n+3*k-1, n-k). - Vladeta Jovovic, Mar 23 2003
a(n) = sum{k=0..n, binomial(4n-3k-1,k)}. - Paul Barry, Feb 02 2006
G.f.: x/(1-5x+6x^2-4x^3+x^4). - Paul Barry, Feb 02 2006

A079675 a(1)=1; a(n)=sum(u=1,n-1,sum(v=1,u,sum(w=1,v,sum(x=1, w,sum(y=1,x,a(y)))))).

Original entry on oeis.org

1, 1, 6, 26, 106, 431, 1757, 7168, 29244, 119305, 486716, 1985603, 8100456, 33046585, 134816705, 549997641, 2243767969, 9153665985, 37343255690, 152345382480, 621507555626, 2535499503900, 10343812679475, 42198572937400
Offset: 1

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

Row sums of Riordan array (1,1/(1-x)^5). A quintisection of A003520. - Paul Barry, Feb 02 2006

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-10,10,-5,1},{1,1,6,26,106,431},40] (* Harvey P. Dale, Aug 21 2017 *)

Formula

a(1)=1, a(2)=1, a(3)=6, a(4)=26, a(5)=106, a(6)=431; for n>=7, a(n)=5*u(n-1)-4*u(n-2)+u(n-3)+b(n) where b(n) is the 6 periodic sequence (0, 1, 1, 0, -1, -1)
G.f.: (1-x)^5/((1-x)^5-x); a(n)=sum{k=0..n, binomial(5n-4k-1,k)}; - Paul Barry, Feb 02 2006

A052544 Expansion of (1-x)^2/(1 - 4*x + 3*x^2 - x^3).

Original entry on oeis.org

1, 2, 6, 19, 60, 189, 595, 1873, 5896, 18560, 58425, 183916, 578949, 1822473, 5736961, 18059374, 56849086, 178955183, 563332848, 1773314929, 5582216355, 17572253481, 55315679788, 174128175064, 548137914373, 1725482812088
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals INVERT transform of (1, 1, 3, 8, 21, 55, 144, ...). - Gary W. Adamson, May 01 2009
The Ze2 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence. - Johannes W. Meijer, Aug 16 2011
Equals the partial sums of A052529 starting (1, 1, 4, 13, 41, 129, ...). - Gary W. Adamson, Feb 15 2012
First trisection of Narayana's cows sequence A000930. - Oboifeng Dira, Aug 03 2016
From Peter Bala, Nov 03 2017: (Start)
Let f(x) = x/(1 - x^3), the characteristic function of numbers of the form 3*n + 1. Then f(f(x)) = Sum_{n >= 0} a(n)*x^(3*n+1).
a(n) = the number of compositions of 3*n + 1 into parts of the form 3*m + 1. For example, a(2) = 6 and the six compositions of 7 into parts of the form 3*m + 1 are 7, 4 + 1 + 1 + 1, 1 + 4 + 1 + 1, 1 + 1 + 4 + 1, 1 + 1 + 1 + 4 and 1 + 1 + 1 + 1 + 1 + 1 + 1. Cf. A001519, which gives the number of compositions of an odd number into odd parts. (End)
a(n-1) is the number of permutations of length n avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second and third elements, and the fourth element is larger than the second element. - Sergey Kitaev, Dec 09 2020

Examples

			G.f. = 1 + 2*x + 6*x^2 + 19*x^3 + 60*x^4 + 189*x^5 + 595*x^6 + 1873*x^7 + ...
		

Crossrefs

Cf. A124820 (partial sums).

Programs

  • GAP
    a:=[1,2,6];; for n in [4..30] do a[n]:=4*a[n-1]-3*a[n-2]+a[n-3]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    I:=[1, 2, 6]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 12 2012
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Z),Sequence(Z))))}, unlabeled]: seq(combstruct[count](spec,size=n), n=0..25);
    A052544 := proc(n): add(binomial(n+2*k, 3*k), k=0...n)  end: seq(A052544(n), n=0..25); # Johannes W. Meijer, Aug 16 2011
  • Mathematica
    LinearRecurrence[{4,-3,1},{1,2,6},30] (* Harvey P. Dale, Jul 13 2011 *)
    Table[Sum[Binomial[n + 2 k, 3 k], {k, 0, n}], {n, 0, 30}] (* or *)
    CoefficientList[Series[(1-x)^2/(1-4x+3x^2-x^3), {x, 0, 30}], x] (* Michael De Vlieger, Aug 03 2016 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(n + 2*k, 3*k))}; /* Michael Somos, Jan 12 2012 */
    
  • PARI
    Vec((1-x)^2/(1-4*x+3*x^2-x^3)+O(x^30)) \\ Charles R Greathouse IV, Jan 12 2012
    
  • Sage
    ((1-x)^2/(1-4*x+3*x^2-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: (1-x)^2/(1 -4*x +3*x^2 -x^3).
a(n) = 4*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = Sum(-1/31*(-4-7*_alpha+2*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(-1+4*_Z-3*_Z^2+_Z^3)).
a(n) = Sum_{k=0..n} binomial(n+2*k, 3*k). - Richard L. Ollerton, May 12 2004
G.f.: 1 / (1 - x - x / (1 - x)^2). - Michael Somos, Jan 12 2012
a(n) = hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], -4/27). - Peter Luschny, Nov 03 2017

Extensions

More terms from James Sellers, Jun 06 2000

A055988 Sequence is its own 4th difference.

Original entry on oeis.org

1, 2, 7, 26, 95, 345, 1252, 4544, 16493, 59864, 217286, 788674, 2862617, 10390321, 37713313, 136886433, 496850954, 1803399103, 6545722210, 23758733815, 86236081273, 313007493212, 1136110191472, 4123691589365, 14967590689568
Offset: 1

Views

Author

Henry Bottomley, Jun 02 2000

Keywords

Comments

Row sums of Riordan array (1/(1-x), x/(1-x)^4), A109960. - Paul Barry, Jul 06 2005

Crossrefs

Cf. A055989, A055990, A055991 for the other differences of a(n). See A000079, A001906, A052529 for examples of sequences which are respectively their own first, second and third differences.

Programs

  • Magma
    I:=[1, 2, 7, 26]; [n le 4 select I[n] else 5*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 05 2012
  • Mathematica
    CoefficientList[Series[(1-x)^3/(1-5x+6x^2-4x^3+x^4),{x,0,40}],x] (* Vincenzo Librandi, Apr 05 2012 *)
    LinearRecurrence[{5,-6,4,-1},{1,2,7,26},30] (* Harvey P. Dale, Jan 15 2017 *)

Formula

a(n) = 5a(n-1) - 6a(n-2) + 4a(n-3) - a(n-4) = a(n-1) + A055991(n-1) = A055989(n) - A055989(n-1) = A055990(n) - 2*A055990(n-1) + A055990(n-2).
From Paul Barry, Jul 06 2005: (Start)
G.f.: (1-x)^3/(1 - 5x + 6x^2 - 4x^3 + x^4);
a(n) = Sum_{k=0..n} binomial(n+3k, 4k). (End)

Extensions

More terms from James Sellers, Jun 05 2000

A251100 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having its minimum diagonal element less than its minimum antidiagonal element.

Original entry on oeis.org

13, 41, 41, 129, 212, 129, 406, 1109, 1109, 406, 1278, 5817, 9597, 5817, 1278, 4023, 30517, 82814, 82814, 30517, 4023, 12664, 160086, 713769, 1175519, 713769, 160086, 12664, 39865, 839758, 6151051, 16697127, 16697127, 6151051, 839758, 39865
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2014

Keywords

Comments

Table starts
.....13........41.........129...........406.............1278...............4023
.....41.......212........1109..........5817............30517.............160086
....129......1109........9597.........82814...........713769............6151051
....406......5817.......82814.......1175519.........16697127..........237288487
...1278.....30517......713769......16697127........391088995.........9160138107
...4023....160086.....6151051.....237288487.......9160138107.......353489877714
..12664....839758....53009570....3372537762.....214512524583.....13640572890821
..39865...4405079...456842112...47933018061....5023196973684....526395665662695
.125491..23107524..3937123328..681254534234..117627015646158..20314343818684906
.395033.121214121.33930621210.9682407527191.2754453306431041.783961045672945429

Examples

			Some solutions for n=3 k=4
..0..0..1..1..0....0..1..1..0..1....1..1..1..0..0....0..0..1..1..0
..0..0..0..1..1....0..1..1..0..1....0..0..1..0..0....1..0..0..0..0
..0..0..0..0..1....0..0..1..0..0....0..0..0..0..0....0..0..0..1..0
..0..1..1..0..1....1..0..1..1..1....1..0..0..1..0....0..0..0..1..0
		

Crossrefs

Column 1 is A052529(n+2)

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2) +a(n-3)
k=2: a(n) = 7*a(n-1) -11*a(n-2) +10*a(n-3) -3*a(n-4)
k=3: [order 9]
k=4: [order 17]
k=5: [order 31]
k=6: [order 57] for n>58

A124820 Expansion of (1-x)/(1-4*x+3*x^2-x^3).

Original entry on oeis.org

1, 3, 9, 28, 88, 277, 872, 2745, 8641, 27201, 85626, 269542, 848491, 2670964, 8407925, 26467299, 83316385, 262271568, 825604416, 2598919345, 8181135700, 25753389181, 81069068969, 255197244033, 803335158406, 2528817970494
Offset: 0

Views

Author

Paul Barry, Nov 08 2006

Keywords

Comments

Row sums of A124819.
Let M = a triangle with the triangular series in every column, but the leftmost column is shifted upwards one row. Then A124820 = Lim_{n->inf} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
Second trisection of Narayana's cows sequence A000930. - Oboifeng Dira, Aug 03 2016

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 4 x + 3 x^2 - x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 20 2014 *)
    LinearRecurrence[{4,-3,1},{1,3,9},30] (* Harvey P. Dale, Apr 29 2016 *)
    Table[Sum[Binomial[n + 2 k + 1, 3 k + 1], {k, 0, n}], {n, 0, 25}] (* Michael De Vlieger, Aug 03 2016 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,-3,4]^n*[1;3;9])[1,1] \\ Charles R Greathouse IV, Aug 03 2016

Formula

a(n) = sum( k=0..n, C(n+2k+1, 3k+1) ).
a(n) = A052529(n+1) - A052529(n), n>1. - R. J. Mathar, Dec 15 2008
Showing 1-10 of 25 results. Next