A007318 Pascal's triangle read by rows: C(n,k) = binomial(n,k) = n!/(k!*(n-k)!), 0 <= k <= n.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
Examples
Triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 ... 0 1 1 1 1 2 1 2 1 3 1 3 3 1 4 1 4 6 4 1 5 1 5 10 10 5 1 6 1 6 15 20 15 6 1 7 1 7 21 35 35 21 7 1 8 1 8 28 56 70 56 28 8 1 9 1 9 36 84 126 126 84 36 9 1 10 1 10 45 120 210 252 210 120 45 10 1 11 1 11 55 165 330 462 462 330 165 55 11 1 ... There are C(4,2)=6 ways to distribute 5 balls BBBBB, among 3 different urns, < > ( ) [ ], so that each urn gets at least one ball, namely, <BBB>(B)[B], <B>(BBB)[B], <B>(B)[BBB], <BB>(BB)[B], <BB>(B)[BB], and <B>(BB)[BB]. There are C(4,2)=6 increasing functions from {1,2} to {1,2,3,4}, namely, {(1,1),(2,2)},{(1,1),(2,3)}, {(1,1),(2,4)}, {(1,2),(2,3)}, {(1,2),(2,4)}, and {(1,3),(2,4)}. - _Dennis P. Walsh_, Apr 07 2011 There are C(4,2)=6 subsets of {1,2,3,4,5} with median element 3, namely, {3}, {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}, and {1,2,3,4,5}. - _Dennis P. Walsh_, Dec 15 2011 The successive k-iterations of {A(0)} = E are E;E;E;...; the corresponding number of elements are 1,1,1,... The successive k-iterations of {A(1)} = {a} are (omitting brackets) a;a,E; a,E,E;...; the corresponding number of elements are 1,2,3,... The successive k-iterations of {A(2)} = {a,a} are aa; aa,a,E; aa, a, E and a,E and E;...; the corresponding number of elements are 1,3,6,... - _Gregory L. Simay_, Aug 06 2018 Boas-Buck type recurrence for column k = 4: T(8, 4) = (5/4)*(1 + 5 + 15 + 35) = 70. See the Boas-Buck comment above. - _Wolfdieter Lang_, Nov 12 2018
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Amulya Kumar Bag, Binomial theorem in ancient India, Indian Journal of History of Science, vol. 1 (1966), pp. 68-74.
- Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 63ff.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 306.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 68-74.
- Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
- A. W. F. Edwards, Pascal's Arithmetical Triangle, 2002.
- William Feller, An Introduction to Probability Theory and Its Application, Vol. 1, 2nd ed. New York: Wiley, p. 36, 1968.
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, p. 155.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, pp. 140-141.
- David Hök, Parvisa mönster i permutationer [Swedish], 2007.
- Donald E. Knuth, The Art of Computer Programming, Vol. 1, 2nd ed., p. 52.
- Sergei K. Lando, Lecture on Generating Functions, Amer. Math. Soc., Providence, R.I., 2003, pp. 60-61.
- Blaise Pascal, Traité du triangle arithmétique, avec quelques autres petits traitez sur la mesme matière, Desprez, Paris, 1665.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 271-275.
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 6.
- John Riordan, Combinatorial Identities, Wiley, 1968, p. 2.
- Robert Sedgewick and Philippe Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996, p. 143.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, pages 43-52.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 13, 30-33.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 115-118.
- Douglas B. West, Combinatorial Mathematics, Cambridge, 2021, p. 25.
Links
- N. J. A. Sloane, First 141 rows of Pascal's triangle, formatted as a simple linear sequence: (n, a(n)), n=0..10152.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Tewodros Amdeberhan, Moa Apagodu, and Doron Zeilberger, Wilf's "Snake Oil" Method Proves an Identity in The Motzkin Triangle, arXiv:1507.07660 [math.CO], 2015.
- Said Amrouche and Hacène Belbachir, Asymmetric extension of Pascal-Dellanoy triangles, arXiv:2001.11665 [math.CO], 2020.
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics, Vol. 332, No. 6 (2014), pp. 45-54.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38 (2012), pp. 1871-1876.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42 (2012), pp. 2053-2059.
- Amulya Kumar Bag, Binomial theorem in ancient India, Indian Journal of History of Science, Vol. 1 (1966), pp. 68-74.
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics, Vol. 67 (2018), pp. 71-77.
- Peter Bala, A combinatorial interpretation for the binomial coefficients, 2013.
- Cyril Banderier and Donatella Merlini, Lattice paths with an infinite set of jumps, Proceedings of the 14th International Conference on Formal Power Series and Algebraic Combinatorics, Melbourne, Australia. 2002.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays , JIS, Vol. 12 (2009) Article 09.8.6.
- Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, arXiv:1105.3043 [math.CO], 2011.
- Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv:1105.3044 [math.CO], 2011.
- Paul Barry, On the Central Coefficients of Bell Matrices, J. Int. Seq., Vol. 14 (2011) Article 11.4.3, example 2.
- Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 (2012), Article 12.8.2.
- Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.1.
- Paul Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.4.
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.6.
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Vol. 2013 (2013), Article ID 657806, 10 pages.
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.6.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, Vol. 491 (2016), pp. 343-385.
- Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Paul Barry, On the halves of a Riordan array and their antecedents, arXiv:1906.06373 [math.CO], 2019.
- Paul Barry, On the r-shifted central triangles of a Riordan array, arXiv:1906.01328 [math.CO], 2019.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Paul Barry, Extensions of Riordan Arrays and Their Applications, Mathematics (2025) Vol. 13, No. 2, 242. See p. 13.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See p. 2.
- Paul Barry and Aoife Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.2.
- Jonathan W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977v1 [math.NT], J. London Math. Soc. (2), Vol. 79 (2009), pp. 422-444.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 4.
- Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth and Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
- Douglas Butler, Pascal's Triangle.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- Dario T. de Castro, p-adic Order of Positive Integers via Binomial Coefficients, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 22, Paper A61, 2022.
- Ji Young Choi, Digit Sums Generalizing Binomial Coefficients, J. Int. Seq., Vol. 22 (2019), Article 19.8.3.
- Cristian Cobeli and Alexandru Zaharescu, Promenade around Pascal Triangle - Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104) No. 1 (2013), pp. 73-98.
- CombOS - Combinatorial Object Server, Generate combinations.
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond. A, Vo. 453, No. 1966 (1997), pp. 2369-2389.
- Tom Copeland, Infinigens, the Pascal Triangle, and the Witt and Virasoro Algebras.
- Persi Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Probability, Vol. 5 (1977), pp. 72-81.
- Karl Dilcher and Kenneth B. Stolarsky, A Pascal-Type Triangle Characterizing Twin Primes, The American Mathematical Monthly, Vol. 112, No. 8 (Oct 2005), pp. 673-681.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math., Vol. 308, No. 11 (2008), pp. 2182-2212. MR2404544 (2009j:05019).
- Steffen Eger, Some Elementary Congruences for the Number of Weighted Integer Compositions, J. Int. Seq., Vol. 18 (2015), Article 15.4.1.
- Leonhard Euler, On the expansion of the power of any polynomial (1+x+x^2+x^3+x^4+etc.)^n, arXiv:math/0505425 [math.HO], 2005. See also The Euler Archive, item E709.
- Jackson Evoniuk, Steven Klee, and Van Magnan, Enumerating Minimal Length Lattice Paths, J. Int. Seq., Vol. 21 (2018), Article 18.3.6.
- A. Farina, S. Giompapa, A. Graziano, A. Liburdi, M. Ravanelli, and F. Zirilli, Tartaglia-Pascal's triangle: a historical perspective with applications, Signal, Image and Video Processing, Vol. 7, No. 1 (January 2013), pp. 173-188.
- Steven Finch, Pascal Sebah, and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
- David Fowler, The binomial coefficient function, Amer. Math. Monthly, Vol. 103, No. 1 (1996), pp. 1-17.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Tom Halverson and Theodore N. Jacobson, Set-partition tableaux and representations of diagram algebras, arXiv:1808.08118 [math.RT], 2018.
- T. Han and S. Kitaev, Joint distributions of statistics over permutations avoiding two patterns of length 3, arXiv:2311.02974 [math.CO], 2023
- Brady Haran and Casandra Monroe, Pascal's Triangle, Numberphile video (2017).
- Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math., Vol. 309, No. 12 (2009), pp. 3962-3974.
- Nick Hobson, Python program for A007318.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., Vol. 14, No. 5 (1976), pp. 395-405.
- Matthew Hubbard and Tom Roby, Pascal's Triangle From Top to Bottom. [archived page]
- Charles Jordan, Calculus of Finite Differences (p. 65).
- Subhash Kak, The golden mean and the physics of aesthetics, in: B. Yadav and M. Mohan (eds.), Ancient Indian Leaps into Mathematics, Birkhäuser, Boston, MA, 2009, pp. 111-119; arXiv preprint, arXiv:physics/0411195 [physics.hist-ph], 2004.
- Petro Kolosov, Polynomial identities involving Pascal's triangle rows, 2022.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq., Vol. 3 (2000), Article 00.2.4.
- Eitan Y. Levine, GCD formula proof.
- Meng Li and Ron Goldman, Limits of sums for binomial and Eulerian numbers and their associated distributions, Discrete mathematics, Vol. 343, No. 7 (2020), 111870.
- P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, Vol. 184 (1893), pp. 835-901.
- Mathforum, Pascal's Triangle
- Carl McTague, On the Greatest Common Divisor of C(q*n,n), C(q*n,2*n), ...C(q*n,q*n-q), arXiv:1510.06696 [math.CO], 2015.
- D. Merlini, R. Sprugnoli, and M. C. Verri, An algebra for proper generating trees, in: D. Gardy and A. Mokkadem (eds.), Mathematics and Computer Science, Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 127-139; alternative link.
- Donatella Merlini, Francesca Uncini, and M. Cecilia Verri, A unified approach to the study of general and palindromic compositions, Integers, Vol. 4 (2004), A23, 26 pp.
- Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
- Pierre Remond de Montmort, Essay d'analyse sur les jeux de hazard, Paris: Chez Jacque Quillau, 1708, p. 80.
- Yossi Moshe, The density of 0's in recurrence double sequences, J. Number Theory, Vol. 103 (2003), pp. 109-121.
- Lili Mu and Sai-nan Zheng, On the Total Positivity of Delannoy-Like Triangles, Journal of Integer Sequences, Vol. 20 (2017), Article 17.1.6.
- Abdelkader Necer, Séries formelles et produit de Hadamard, Journal de théorie des nombres de Bordeaux, Vol. 9, No. 2 (1997), pp. 319-335.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.3.
- Asamoah Nkwanta and Akalu Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.5.
- Mustafa A. A. Obaid, S. Khalid Nauman, Wafaa M. Fakieh, and Claus Michael Ringel, The numbers of support-tilting modules for a Dynkin algebra, 2014.
- OEIS Wiki, Binomial coefficients
- Richard L. Ollerton and Anthony G. Shannon, Some properties of generalized Pascal squares and triangles, Fib. Q., Vol. 36, No. 2 (1998), pp. 98-109.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003. [Cached copy, with permission (pdf only)]
- Balak Ram, Common factors of n!/(m!(n-m)!), (m = 1, 2, ... n-1), Journal of the Indian Mathematical Club (Madras) 1 (1909), pp. 39-43.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
- Thomas M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
- Yuriy Shablya, Dmitry Kruchinin, and Vladimir Kruchinin, Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees and Its Application, Mathematics, Vol. 8, No. 6 (2020), 962.
- Louis W. Shapiro, Seyoum Getu, Wen-Jin Woan, and Leon C. Woodson, The Riordan group, Discrete Applied Math., Vol. 34 (1991), pp. 229-239.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Triangle showing silhouette of first 30 rows of Pascal's triangle (after Cobeli and Zaharescu)
- N. J. A. Sloane, The OEIS: A Fingerprint File for Mathematics, arXiv:2105.05111 [math.HO], 2021.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
- Hermann Stamm-Wilbrandt, Compute C(n+m,...) based on C(n,...) and C(m,...) values animation.
- Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
- Christopher Stover and Eric W. Weisstein, Composition. From MathWorld - A Wolfram Web Resource.
- Gérard Villemin's Almanach of Numbers, Triangle de Pascal.
- Eric Weisstein's World of Mathematics, Pascal's Triangle.
- Wikipedia, Pascal's triangle.
- Herbert S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, pp. 12ff.
- Ken Williams, Mathforum, Interactive Pascal's Triangle.
- Doron Zeilberger, The Combinatorial Astrology of Rabbi Abraham Ibn Ezra, arXiv:math/9809136 [math.CO], 1998.
- Chris Zheng and Jeffrey Zheng, Triangular Numbers and Their Inherent Properties, Variant Construction from Theoretical Foundation to Applications, Springer, Singapore, 51-65.
- Index entries for triangles and arrays related to Pascal's triangle.
- Index entries for "core" sequences.
- Index entries for sequences related to Benford's law.
Crossrefs
Equals differences between consecutive terms of A102363. - David G. Williams (davidwilliams(AT)Paxway.com), Jan 23 2006
Row sums give A000079 (powers of 2).
Partial sums of rows give triangle A008949.
The triangle of the antidiagonals is A011973.
Another version: A108044.
Cf. A008277, A132311, A132312, A052216, A052217, A052218, A052219, A052220, A052221, A052222, A052223, A144225, A202750, A211226, A047999, A026729, A052553, A051920, A193242.
Triangle sums (see the comments): A000079 (Row1); A000007 (Row2); A000045 (Kn11 & Kn21); A000071 (Kn12 & Kn22); A001924 (Kn13 & Kn23); A014162 (Kn14 & Kn24); A014166 (Kn15 & Kn25); A053739 (Kn16 & Kn26); A053295 (Kn17 & Kn27); A053296 (Kn18 & Kn28); A053308 (Kn19 & Kn29); A053309 (Kn110 & Kn210); A001519 (Kn3 & Kn4); A011782 (Fi1 & Fi2); A000930 (Ca1 & Ca2); A052544 (Ca3 & Ca4); A003269 (Gi1 & Gi2); A055988 (Gi3 & Gi4); A034943 (Ze1 & Ze2); A005251 (Ze3 & Ze4). - Johannes W. Meijer, Sep 22 2010
Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074, A228196, A228576.
Cf. A115940 (pandigital binomial coefficients C(m,k) with k>1).
Programs
-
Axiom
-- (start) )set expose add constructor OutputForm pascal(0,n) == 1 pascal(n,n) == 1 pascal(i,j | 0 < i and i < j) == pascal(i-1,j-1) + pascal(i,j-1) pascalRow(n) == [pascal(i,n) for i in 0..n] displayRow(n) == output center blankSeparate pascalRow(n) for i in 0..20 repeat displayRow i -- (end)
-
GAP
Flat(List([0..12],n->List([0..n],k->Binomial(n,k)))); # Stefano Spezia, Dec 22 2018
-
Haskell
a007318 n k = a007318_tabl !! n !! k a007318_row n = a007318_tabl !! n a007318_list = concat a007318_tabl a007318_tabl = iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1] -- Cf. http://www.haskell.org/haskellwiki/Blow_your_mind#Mathematical_sequences -- Reinhard Zumkeller, Nov 09 2011, Oct 22 2010
-
Magma
/* As triangle: */ [[Binomial(n, k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jul 29 2015
-
Maple
A007318 := (n,k)->binomial(n,k);
-
Mathematica
Flatten[Table[Binomial[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 19 2004 *) Flatten[CoefficientList[CoefficientList[Series[1/(1 - x - x*y), {x, 0, 12}], x], y]] (* Mats Granvik, Jul 08 2014 *)
-
Maxima
create_list(binomial(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
PARI
C(n,k)=binomial(n,k) \\ Charles R Greathouse IV, Jun 08 2011
-
Python
# See Hobson link. Further programs: from math import prod,factorial def C(n,k): return prod(range(n,n-k,-1))//factorial(k) # M. F. Hasler, Dec 13 2019, updated Apr 29 2022, Feb 17 2023
-
Python
from math import comb, isqrt def A007318(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2)) # Chai Wah Wu, Nov 11 2024
-
Sage
def C(n,k): return Subsets(range(n), k).cardinality() # Ralf Stephan, Jan 21 2014
Formula
a(n, k) = C(n,k) = binomial(n, k).
C(n, k) = C(n-1, k) + C(n-1, k-1).
The triangle is symmetric: C(n,k) = C(n,n-k).
a(n+1, m) = a(n, m) + a(n, m-1), a(n, -1) := 0, a(n, m) := 0, n
C(n, k) = n!/(k!(n-k)!) if 0<=k<=n, otherwise 0.
C(n, k) = ((n-k+1)/k) * C(n, k-1) with C(n, 0) = 1. - Michael B. Porter, Mar 23 2025
G.f.: 1/(1-y-x*y) = Sum_(C(n, k)*x^k*y^n, n, k>=0)
G.f.: 1/(1-x-y) = Sum_(C(n+k, k)*x^k*y^n, n, k>=0).
G.f. for row n: (1+x)^n = Sum_{k=0..n} C(n, k)*x^k.
G.f. for column k: x^k/(1-x)^(k+1); [corrected by Werner Schulte, Jun 15 2022].
E.g.f.: A(x, y) = exp(x+x*y).
E.g.f. for column n: x^n*exp(x)/n!.
In general the m-th power of A007318 is given by: T(0, 0) = 1, T(n, k) = T(n-1, k-1) + m*T(n-1, k), where n is the row-index and k is the column; also T(n, k) = m^(n-k)*C(n, k).
Triangle T(n, k) read by rows; given by A000007 DELTA A000007, where DELTA is Deléham's operator defined in A084938.
Let P(n+1) = the number of integer partitions of (n+1); let p(i) = the number of parts of the i-th partition of (n+1); let d(i) = the number of different parts of the i-th partition of (n+1); let m(i, j) = multiplicity of the j-th part of the i-th partition of (n+1). Define the operator Sum_{i=1..P(n+1), p(i)=k+1} as the sum running from i=1 to i=P(n+1) but taking only partitions with p(i)=(k+1) parts into account. Define the operator Product_{j=1..d(i)} = product running from j=1 to j=d(i). Then C(n, k) = Sum_{p(i)=(k+1), i=1..P(n+1)} p(i)! / [Product_{j=1..d(i)} m(i, j)!]. E.g., C(5, 3) = 10 because n=6 has the following partitions with m=3 parts: (114), (123), (222). For their multiplicities one has: (114): 3!/(2!*1!) = 3; (123): 3!/(1!*1!*1!) = 6; (222): 3!/3! = 1. The sum is 3 + 6 + 1 = 10 = C(5, 3). - Thomas Wieder, Jun 03 2005
C(n, k) = Sum_{j=0..k} (-1)^j*C(n+1+j, k-j)*A000108(j). - Philippe Deléham, Oct 10 2005
G.f.: 1 + x*(1 + x) + x^3*(1 + x)^2 + x^6*(1 + x)^3 + ... . - Michael Somos, Sep 16 2006
Sum_{k=0..floor(n/2)} x^(n-k)*T(n-k,k) = A000007(n), A000045(n+1), A002605(n), A030195(n+1), A057087(n), A057088(n), A057089(n), A057090(n), A057091(n), A057092(n), A057093(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. Sum_{k=0..floor(n/2)} (-1)^k*x^(n-k)*T(n-k,k) = A000007(n), A010892(n), A009545(n+1), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n+1), A057086(n), A084329(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, respectively. - Philippe Deléham, Sep 16 2006
C(n,k) <= A062758(n) for n > 1. - Reinhard Zumkeller, Mar 04 2008
C(t+p-1, t) = Sum_{i=0..t} C(i+p-2, i) = Sum_{i=1..p} C(i+t-2, t-1). A binomial number is the sum of its left parent and all its right ancestors, which equals the sum of its right parent and all its left ancestors. - Lee Naish (lee(AT)cs.mu.oz.au), Mar 07 2008
From Paul D. Hanna, Mar 24 2011: (Start)
Let A(x) = Sum_{n>=0} x^(n*(n+1)/2)*(1+x)^n be the g.f. of the flattened triangle:
A(x) = 1 + (x + x^2) + (x^3 + 2*x^4 + x^5) + (x^6 + 3*x^7 + 3*x^8 + x^9) + ...
then A(x) equals the series Sum_{n>=0} (1+x)^n*x^n*Product_{k=1..n} (1-(1+x)*x^(2*k-1))/(1-(1+x)*x^(2*k));
also, A(x) equals the continued fraction 1/(1- x*(1+x)/(1+ x*(1-x)*(1+x)/(1- x^3*(1+x)/(1+ x^2*(1-x^2)*(1+x)/(1- x^5*(1+x)/(1+ x^3*(1-x^3)*(1+x)/(1- x^7*(1+x)/(1+ x^4*(1-x^4)*(1+x)/(1- ...))))))))).
These formulas are due to (1) a q-series identity and (2) a partial elliptic theta function expression. (End)
Row n of the triangle is the result of applying the ConvOffs transform to the first n terms of the natural numbers (1, 2, 3, ..., n). See A001263 or A214281 for a definition of this transformation. - Gary W. Adamson, Jul 12 2012
From L. Edson Jeffery, Aug 02 2012: (Start)
Row n (n >= 0) of the triangle is given by the n-th antidiagonal of the infinite matrix P^n, where P = (p_{i,j}), i,j >= 0, is the production matrix
0, 1,
1, 0, 1,
0, 1, 0, 1,
0, 0, 1, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 1, 0, 1,
... (End)
Row n of the triangle is also given by the n+1 coefficients of the polynomial P_n(x) defined by the recurrence P_0(x) = 1, P_1(x) = x + 1, P_n(x) = x*P_{n-1}(x) + P_{n-2}(x), n > 1. - L. Edson Jeffery, Aug 12 2013
For a closed-form formula for arbitrary left and right borders of Pascal-like triangles see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013
(1+x)^n = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*Sum_{i=0..k} k^(n-i)*binomial(k,i)*x^(n-i)/(n-i)!. - Vladimir Kruchinin, Oct 21 2013
E.g.f.: A(x,y) = exp(x+x*y) = 1 + (x+y*x)/( E(0)-(x+y*x)), where E(k) = 1 + (x+y*x)/(1 + (k+1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 08 2013
E.g.f.: E(0) -1, where E(k) = 2 + x*(1+y)/(2*k+1 - x*(1+y)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
G.f.: 1 + x*(1+x)*(1+x^2*(1+x)/(W(0)-x^2-x^3)), where W(k) = 1 + (1+x)*x^(k+2) - (1+x)*x^(k+3)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
Sum_{n>=0} C(n,k)/n! = e/k!, where e = exp(1), while allowing n < k where C(n,k) = 0. Also Sum_{n>=0} C(n+k-1,k)/n! = e * A000262(k)/k!, and for k>=1 equals e * A067764(k)/A067653(k). - Richard R. Forberg, Jan 01 2014
Sum_{n>=k} 1/C(n,k) = k/(k-1) for k>=1. - Richard R. Forberg, Feb 10 2014
From Tom Copeland, Apr 26 2014: (Start)
Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result by A007318(x) = P(x). Then with :xD:^n = x^n*(d/dx)^n and B(n,x), the Bell polynomials (A008277),
A) P(x)= exp(x*dP) = exp[x*(e^M-I)] = exp[M*B(.,x)] = (I+dP)^B(.,x)
B) P(:xD:) = exp(dP:xD:) = exp[(e^M-I):xD:] = exp[M*B(.,:xD:)] = exp[M*xD] = (I+dP)^(xD) with action P(:xD:)g(x) = exp(dP:xD:)g(x) = g[(I+dP)*x] (cf. also A238363).
C) P(x)^y = P(y*x). P(2x) = A038207(x) = exp[M*B(.,2x)], the face vectors of the n-dim hypercubes.
D) P(x) = [St2]*exp(x*M)*[St1] = [St2]*(I+dP)^x*[St1]
E) = [St1]^(-1)*(I+dP)^x*[St1] = [St2]*(I+dP)^x*[St2]^(-1)
where [St1]=padded A008275 just as [St2]=A048993=padded A008277 and exp(x*M) = (I+dP)^x = Sum_{k>=0} C(x,k) dP^k. (End)
From Peter Bala, Dec 21 2014: (Start)
Recurrence equation: T(n,k) = T(n-1,k)*(n + k)/(n - k) - T(n-1,k-1) for n >= 2 and 1 <= k < n, with boundary conditions T(n,0) = T(n,n) = 1. Note, changing the minus sign in the recurrence to a plus sign gives a recurrence for the square of the binomial coefficients - see A008459.
There is a relation between the e.g.f.'s of the rows and the diagonals of the triangle, namely, exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(1 + 3*x + 3*x^2/2! + x^3/3!) = 1 + 4*x + 10*x^2/2! + 20*x^3/3! + 35*x^4/4! + .... This property holds more generally for the Riordan arrays of the form ( f(x), x/(1 - x) ), where f(x) is an o.g.f. of the form 1 + f_1*x + f_2*x^2 + .... See, for example, A055248 and A106516.
Let P denote the present triangle. For k = 0,1,2,... define P(k) to be the lower unit triangular block array
/I_k 0\
\ 0 P/ having the k X k identity matrix I_k as the upper left block; in particular, P(0) = P. The infinite product P(0)*P(1)*P(2)*..., which is clearly well-defined, is equal to the triangle of Stirling numbers of the second kind A008277. The infinite product in the reverse order, that is, ...*P(2)*P(1)*P(0), is equal to the triangle of Stirling cycle numbers A130534. (End)
C(a+b,c) = Sum_{k=0..a} C(a,k)*C(b,b-c+k). This is a generalization of equation 1 from section 4.2.5 of the Prudnikov et al. reference, for a=b=c=n: C(2*n,n) = Sum_{k=0..n} C(n,k)^2. See Links section for animation of new formula. - Hermann Stamm-Wilbrandt, Aug 26 2015
The row polynomials of the Pascal matrix P(n,x) = (1+x)^n are related to the Bernoulli polynomials Br(n,x) and their umbral compositional inverses Bv(n,x) by the umbral relation P(n,x) = (-Br(.,-Bv(.,x)))^n = (-1)^n Br(n,-Bv(.,x)), which translates into the matrix relation P = M * Br * M * Bv, where P is the Pascal matrix, M is the diagonal matrix diag(1,-1,1,-1,...), Br is the matrix for the coefficients of the Bernoulli polynomials, and Bv that for the umbral inverse polynomials defined umbrally by Br(n,Bv(.,x)) = x^n = Bv(n,Br(.,x)). Note M = M^(-1). - Tom Copeland, Sep 05 2015
1/(1-x)^k = (r(x) * r(x^2) * r(x^4) * ...) where r(x) = (1+x)^k. - Gary W. Adamson, Oct 17 2016
Boas-Buck type recurrence for column k for Riordan arrays (see the Aug 10 2017 remark in A046521, also for the reference) with the Boas-Buck sequence b(n) = {repeat(1)}. T(n, k) = ((k+1)/(n-k))*Sum_{j=k..n-1} T(j, k), for n >= 1, with T(n, n) = 1. This reduces, with T(n, k) = binomial(n, k), to a known binomial identity (e.g, Graham et al. p. 161). - Wolfdieter Lang, Nov 12 2018
C((p-1)/a, b) == (-1)^b * fact_a(a*b-a+1)/fact_a(a*b) (mod p), where fact_n denotes the n-th multifactorial, a divides p-1, and the denominator of the fraction on the right side of the equation represents the modular inverse. - Isaac Saffold, Jan 07 2019
C(n,k-1) = A325002(n,k) - [k==n+1] = (A325002(n,k) + A325003(n,k)) / 2 = [k==n+1] + A325003(n,k). - Robert A. Russell, Oct 20 2020
From Hermann Stamm-Wilbrandt, May 13 2021: (Start)
Binomial sums are Fibonacci numbers A000045:
Sum_{k=0..n} C(n + k, 2*k + 1) = F(2*n).
Sum_{k=0..n} C(n + k, 2*k) = F(2*n + 1). (End)
C(n,k) = Sum_{i=0..k} A000108(i) * C(n-2i-1, k-i), for 0 <= k <= floor(n/2)-1. - Tushar Bansal, May 17 2025
Extensions
Checked all links, deleted 8 that seemed lost forever and were probably not of great importance. - N. J. A. Sloane, May 08 2018
A000930 Narayana's cows sequence: a(0) = a(1) = a(2) = 1; thereafter a(n) = a(n-1) + a(n-3).
1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961, 8407925
Offset: 0
Comments
Named after a 14th-century Indian mathematician. [The sequence first appeared in the book "Ganita Kaumudi" (1356) by the Indian mathematician Narayana Pandita (c. 1340 - c. 1400). - Amiram Eldar, Apr 15 2021]
Number of compositions of n into parts 1 and 3. - Joerg Arndt, Jun 25 2011
A Lamé sequence of higher order.
Could have begun 1,0,0,1,1,1,2,3,4,6,9,... (A078012) but that would spoil many nice properties.
Number of tilings of a 3 X n rectangle with straight trominoes.
Number of ways to arrange n-1 tatami mats in a 2 X (n-1) room such that no 4 meet at a point. For example, there are 6 ways to cover a 2 X 5 room, described by 11111, 2111, 1211, 1121, 1112, 212.
Equivalently, number of compositions (ordered partitions) of n-1 into parts 1 and 2 with no two 2's adjacent. E.g., there are 6 such ways to partition 5, namely 11111, 2111, 1211, 1121, 1112, 212, so a(6) = 6. [Minor edit by Keyang Li, Oct 10 2020]
This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0...m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..floor(n/m)} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
a(n+2) is the number of n-bit 0-1 sequences that avoid both 00 and 010. - David Callan, Mar 25 2004 [This can easily be proved by the Cluster Method - see for example the Noonan-Zeilberger article. - N. J. A. Sloane, Aug 29 2013]
a(n-4) is the number of n-bit sequences that start and end with 0 but avoid both 00 and 010. For n >= 6, such a sequence necessarily starts 011 and ends 110; deleting these 6 bits is a bijection to the preceding item. - David Callan, Mar 25 2004
Also number of compositions of n+1 into parts congruent to 1 mod m. Here m=3, A003269 for m=4, etc. - Vladeta Jovovic, Feb 09 2005
Row sums of Riordan array (1/(1-x^3), x/(1-x^3)). - Paul Barry, Feb 25 2005
Row sums of Riordan array (1,x(1+x^2)). - Paul Barry, Jan 12 2006
Starting with offset 1 = row sums of triangle A145580. - Gary W. Adamson, Oct 13 2008
Number of digits in A061582. - Dmitry Kamenetsky, Jan 17 2009
From Jon Perry, Nov 15 2010: (Start)
The family a(n) = a(n-1) + a(n-m) with a(n)=1 for n=0..m-1 can be generated by considering the sums (A102547):
1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
1 3 6 10 15 21 28
1 4 10 20
1
------------------------------
1 1 1 2 3 4 6 9 13 19 28 41 60
with (in this case 3) leading zeros added to each row.
(End)
Number of pairs of rabbits existing at period n generated by 1 pair. All pairs become fertile after 3 periods and generate thereafter a new pair at all following periods. - Carmine Suriano, Mar 20 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=3, 2*a(n-3) equals the number of 2-colored compositions of n with all parts >= 3, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
For n>=2, row sums of Pascal's triangle (A007318) with triplicated diagonals. - Vladimir Shevelev, Apr 12 2012
Pisano period lengths of the sequence read mod m, m >= 1: 1, 7, 8, 14, 31, 56, 57, 28, 24, 217, 60, 56, 168, ... (A271953) If m=3, for example, the remainder sequence becomes 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, ... with a period of length 8. - R. J. Mathar, Oct 18 2012
Diagonal sums of triangle A011973. - John Molokach, Jul 06 2013
"In how many ways can a kangaroo jump through all points of the integer interval [1,n+1] starting at 1 and ending at n+1, while making hops that are restricted to {-1,1,2}? (The OGF is the rational function 1/(1 - z - z^3) corresponding to A000930.)" [Flajolet and Sedgewick, p. 373] - N. J. A. Sloane, Aug 29 2013
a(n) is the number of length n binary words in which the length of every maximal run of consecutive 0's is a multiple of 3. a(5) = 4 because we have: 00011, 10001, 11000, 11111. - Geoffrey Critzer, Jan 07 2014
a(n) is the top left entry of the n-th power of the 3X3 matrix [1, 0, 1; 1, 0, 0; 0, 1, 0] or of the 3 X 3 matrix [1, 1, 0; 0, 0, 1; 1, 0, 0]. - R. J. Mathar, Feb 03 2014
a(n-3) is the top left entry of the n-th power of any of the 3 X 3 matrices [0, 1, 0; 0, 1, 1; 1, 0, 0], [0, 0, 1; 1, 1, 0; 0, 1, 0], [0, 1, 0; 0, 0, 1; 1, 0, 1] or [0, 0, 1; 1, 0, 0; 0, 1, 1]. - R. J. Mathar, Feb 03 2014
Counts closed walks of length (n+3) on a unidirectional triangle, containing a loop at one of remaining vertices. - David Neil McGrath, Sep 15 2014
a(n+2) equals the number of binary words of length n, having at least two zeros between every two successive ones. - Milan Janjic, Feb 07 2015
a(n+1)/a(n) tends to x = 1.465571... (decimal expansion given in A092526) in the limit n -> infinity. This is the real solution of x^3 - x^2 -1 = 0. See also the formula by Benoit Cloitre, Nov 30 2002. - Wolfdieter Lang, Apr 24 2015
a(n+2) equals the number of subsets of {1,2,..,n} in which any two elements differ by at least 3. - Robert FERREOL, Feb 17 2016
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x. If a positive integer N such that r = N^(1/3) is not an integer, then the number of (not necessarily distinct) integers in g(n) is A000930(n), for n >= 1. (See A274142.) - Clark Kimberling, Jun 13 2016
a(n-3) is the number of compositions of n excluding 1 and 2, n >= 3. - Gregory L. Simay, Jul 12 2016
Antidiagonal sums of array A277627. - Paul Curtz, May 16 2019
a(n+1) is the number of multus bitstrings of length n with no runs of 3 ones. - Steven Finch, Mar 25 2020
Suppose we have a(n) samples, exactly one of which is positive. Assume the cost for testing a mix of k samples is 3 if one of the samples is positive (but you will not know which sample was positive if you test more than 1) and 1 if none of the samples is positive. Then the cheapest strategy for finding the positive sample is to have a(n-3) undergo the first test and then continue with testing either a(n-4) if none were positive or with a(n-6) otherwise. The total cost of the tests will be n. - Ruediger Jehn, Dec 24 2020
Examples
The number of compositions of 11 without any 1's and 2's is a(11-3) = a(8) = 13. The compositions are (11), (8,3), (3,8), (7,4), (4,7), (6,5), (5,6), (5,3,3), (3,5,3), (3,3,5), (4,4,3), (4,3,4), (3,4,4). - _Gregory L. Simay_, Jul 12 2016 The compositions from the above example may be mapped to the a(8) compositions of 8 into 1's and 3's using this (more generally applicable) method: replace all numbers greater than 3 with a 3 followed by 1's to make the same total, then remove the initial 3 from the composition. Maintaining the example's order, they become (1,1,1,1,1,1,1,1), (1,1,1,1,1,3), (3,1,1,1,1,1), (1,1,1,1,3,1), (1,3,1,1,1,1), (1,1,1,3,1,1), (1,1,3,1,1,1), (1,1,3,3), (3,1,1,3), (3,3,1,1), (1,3,1,3), (1,3,3,1), (3,1,3,1). - _Peter Munn_, May 31 2017
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 8,80.
- R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [See p. 12, line 3]
- H. Langman, Play Mathematics. Hafner, NY, 1962, p. 13.
- David Sankoff and Lani Haque, Power Boosts for Cluster Tests, in Comparative Genomics, Lecture Notes in Computer Science, Volume 3678/2005, Springer-Verlag. - N. J. A. Sloane, Jul 09 2009
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Harvey P. Dale and T. D. Noe, Table of n, a(n) for n = 0..5000 [The first 500 terms were computed by T. D. Noe]
- Gene Abrams, Stefan Erickson, and Cristóbal Gil Canto, Leavitt path algebras of Cayley graphs C_n^j, arXiv:1712.06480 [math.RA], 2017.
- Jarib R. Acosta, Yadira Caicedo, Juan P. Poveda, José L. Ramírez, and Mark Shattuck, Some New Restricted n-Color Composition Functions, J. Int. Seq., Vol. 22 (2019), Article 19.6.4.
- Mudit Aggarwal and Samrith Ram, Generating Functions for Straight Polyomino Tilings of Narrow Rectangles, J. Int. Seq., Vol. 26 (2023), Article 23.1.4.
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [The hal link does not always work. - _N. J. A. Sloane_, Feb 19 2025]
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [Local copy with annotations and a correction from _N. J. A. Sloane_, Feb 19 2025]
- I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, and M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239v1 [math.CO] Sep 17 2015. See Conjecture 5.8.
- Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Bruce M. Boman, Geometric Capitulum Patterns Based on Fibonacci p-Proportions, Fibonacci Quart. 58 (2020), no. 5, 91-102.
- Bruce M. Boman, Thien-Nam Dinh, Keith Decker, Brooks Emerick, Christopher Raymond, and Gilberto Schleinger, Why do Fibonacci numbers appear in patterns of growth in nature?, in Fibonacci Quarterly, 55(5): pp 30-41, (2017).
- Eric Fernando Bravo, On concatenations of Padovan and Perrin numbers, Math. Commun. (2023) Vol 28, 105-119.
- Russ Chamberlain, Sam Ginsburg and Chi Zhang, Generating Functions and Wilf-equivalence on Theta_k-embeddings, University of Wisconsin, April 2012.
- Eunice Y. S. Chan, A comparison of solution methods for Mandelbrot-like polynomials, MS Thesis, 2016, University of Western Ontario; Electronic Thesis and Dissertation Repository. 4028.
- Eunice Y. S. Chan, Algebraic Companions and Linearizations, The University of Western Ontario (Canada, 2019) Electronic Thesis and Dissertation Repository. 6414.
- Eunice Y. S. Chan and Robert Corless, A new kind of companion matrix, Electronic Journal of Linear Algebra, Volume 32, Article 25, 2017, see p. 339.
- P. Chinn and S. Heubach, (1, k)-compositions, Congr. Numer. 164 (2003), 183-194. [Local copy]
- Hùng Việt Chu, Various sequences from counting subsets, version 2, June 2021.
- Johann Cigler, Some remarks on generalized Fibonacci and Lucas polynomials, arXiv:1912.06651 [math.CO], 2019.
- Tony Crilly, A supergolden rectangle, The Mathematical Gazette 78, No. 483 (1994): 320-325. See page 234.
- Tony Crilly, Narayana's integer sequence revisited, Math. Gaz. (2024) Vol. 108, Issue 572, 262-269.
- E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
- James East and Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
- Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy, Catalan-Spitzer permutations, arXiv:2310.06288 [math.CO], 2023. See p. 11.
- Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, February 2012. - _N. J. A. Sloane_, Jun 10 2012
- M. Feinberg, New slants, Fib. Quart. 2 (1964), 223-227.
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 373.
- Lukas Fleischer and Jeffrey Shallit, Words With Few Palindromes, Revisited, arXiv:1911.12464 [cs.FL], 2019.
- I. M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5.
- Philip Gibbs and Judson McCranie, The Ulam Numbers up to One Trillion, (2017).
- Maria M. Gillespie, Kenneth G. Monks, and Kenneth M. Monks, Enumerating Anchored Permutations with Bounded Gaps, arXiv:1808.03573 [math.CO], 2018.
- Taras Goy, On identities with multinomial coefficients for Fibonacci-Narayana sequence, Annales Mathematicae et Informaticae (2018) 49, Eszterházy Károly University Institute of Mathematics and Informatics, 75-84.
- T. M. Green, Recurrent sequences and Pascal's triangle, Math. Mag., 41 (1968), 13-21.
- Russelle Guadalupe, On the 3-adic valuation of the Narayana numbers, arXiv:2112.06187 [math.NT], 2021.
- R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
- R. K. Guy, The strong law of small numbers, Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- V. C. Harris and C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,2,1).
- W. R. Heinson, Simulation studies on shape and growth kinetics for fractal aggregates in aerosol and colloidal systems, PhD Dissertation, Kansas State Univ., Manhattan, Kansas, 2015; see page 49.
- J. Hermes, Anzahl der Zerlegungen einer ganzen rationalen Zahl in Summanden, Math. Ann., 45 (1894), 371-380.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 14
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 376
- Milan Janjic, Recurrence Relations and Determinants, arXiv preprint arXiv:1112.2466 [math.CO], 2011.
- Milan Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, 2012, Article 12.3.5.
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 91.
- Tom Johnson, Illustrated Music #8, Narayana's Cows
- B. Keszegh, N Lemons and D. Palvolgyi, Online and quasi-online colorings of wedges and intervals, arXiv preprint arXiv:1207.4415 [math.CO], 2012-2015.
- K. Kirthi, Narayana Sequences for Cryptographic Applications, arXiv preprint arXiv:1509.05745 [math.NT], 2015.
- Martin Küttler, Maksym Planeta, Jan Bierbaum, Carsten Weinhold, Hermann Härtig, Amnon Barak, and Torsten Hoefler, Corrected trees for reliable group communication, Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming (PPoPP 2019), 287-299.
- Steven Linton, James Propp, Tom Roby, and Julian West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, Journal of Integer Sequences, Vol. 15 (2012), #12.9.1.
- K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015.
- T. Mansour and M. Shattuck, Polynomials whose coefficients are generalized Tribonacci numbers, Applied Mathematics and Computation, Volume 219, Issue 15, Apr 01 2013, Pages 8366-8374.
- T. Mansour and M. Shattuck, A monotonicity property for generalized Fibonacci sequences, arXiv preprint arXiv:1410.6943 [math.CO], 2014.
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 17.
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares, arXiv:1609.03964 [math.CO] (2016), Section 4.2.
- Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
- Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), #16.8.3.
- J. Noonan and D. Zeilberger, The Goulden-Jackson Cluster Method: Extensions, Applications and Implementations, arXiv:math/9806036 [math.CO], Jun 08 1998.
- Antonio M. Oller-Marcén, The Dying Rabbit Problem Revisited, INTEGERS, 9 (2009), 129-138.
- Pagdame Tiebekabe and Kouèssi Norbert Adédji, Narayana's cows numbers which are concatenations of three repdigits in base Rho, arXiv:2304.00773 [math.NT], 2023.
- Dömötör Pálvölgyi, Coloring Geometric Hypergraphs, Ph. D. Dissertation, Hungarian Acad. Sci. (Hungary, 2023). See p. 35.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Abhishek Raj, Vadim Oganesyan, and Antonello Scardicchio, A kinetically constrained model exhibiting non-linear diffusion and jamming, arXiv:2412.05231 [cond-mat.stat-mech], 2024. See p. 8.
- Narad Rampersad and Max Wiebe, Sums of products of binomial coefficients mod 2 and 2-regular sequences, Integers (2024) Vol. 24, Art. No. A73. See p. 9.
- M. Randic, D. Morales, and O. Araujo, Higher-order Lucas numbers, Divulgaciones Matematicas 6:2 (2008), pp. 275-283.
- Frank Ruskey and Jennifer Woodcock, Counting Fixed-Height Tatami Tilings, Electronic Journal of Combinatorics, Paper R126 (2009), 20 pages.
- Jeffrey Shallit, The Narayana Morphism and Related Words, arXiv:2503.01026 [math.CO], 2025.
- T. Sillke, The binary form of Conway's Sequence
- Parmanand Singh, The Ganita Kaumudi of Narayana Pandita, Ganita-Bharati, Vol. 20, No. 1-4 (1998), pp. 25-82. See pp. 79-80.
- Z. Skupien, Sparse Hamiltonian 2-decompositions together with exact count of numerous Hamiltonian cycles, Discr. Math., 309 (2009), 6382-6390. - _N. J. A. Sloane_, Feb 12 2010
- Yüksel Soykan, On Generalized co-Narayana Numbers, Earthline Journal of Mathematical Sciences, 15(4), 605-638, (2025). See p. 607.
- Krzysztof Strasburger, The order of three lowest-energy states of the six-electron harmonium at small force constant, The Journal of Chemical Physics 144, 234304 (2016).
- Krzysztof Strasburger, Explicitly correlated wavefunctions of the ground state and the lowest 5-tuple state of the carbon atom, arXiv:1903.06051 [physics.chem-ph], 2019.
- Krzysztof Strasburger, Energy difference between the lowest doublet and quartet states of the boron atom, arXiv:2009.08723 [physics.chem-ph], 2020.
- Liam Taylor-West, Modularity, technology, and geometry in compositional practice: a portfolio of original compositions, D. mus. dissertation, Royal College of Music (London, England 2023), p. 56.
- Eric Weisstein's World of Mathematics, Narayana Cow Sequence.
- E. Wilson, The Scales of Mt. Meru
- Index entries for linear recurrences with constant coefficients, signature (1,0,1).
Crossrefs
A120562 has the same recurrence for odd n.
Programs
-
GAP
a:=[1,1,1];; for n in [4..50] do a[n]:=a[n-1]+a[n-3]; od; a; # Muniru A Asiru, Aug 13 2018
-
Haskell
a000930 n = a000930_list !! n a000930_list = 1 : 1 : 1 : zipWith (+) a000930_list (drop 2 a000930_list) -- Reinhard Zumkeller, Sep 25 2011
-
Magma
[1,1] cat [ n le 3 select n else Self(n-1)+Self(n-3): n in [1..50] ]; // Vincenzo Librandi, Apr 25 2015
-
Maple
f := proc(r) local t1,i; t1 := []; for i from 1 to r do t1 := [op(t1),0]; od: for i from 1 to r+1 do t1 := [op(t1),1]; od: for i from 2*r+2 to 50 do t1 := [op(t1),t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 2)}, unlabeled]: seq(count(SeqSetU, size=j), j=3..40); # Zerinvary Lajos, Oct 10 2006 A000930 := proc(n) add(binomial(n-2*k,k),k=0..floor(n/3)) ; end proc: # Zerinvary Lajos, Apr 03 2007 a:= n-> (<<1|1|0>, <0|0|1>, <1|0|0>>^n)[1,1]: seq(a(n), n=0..50); # Alois P. Heinz, Jun 20 2008
-
Mathematica
a[0] = 1; a[1] = a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 3]; Table[ a[n], {n, 0, 40} ] CoefficientList[Series[1/(1 - x - x^3), {x, 0, 45}], x] (* Zerinvary Lajos, Mar 22 2007 *) LinearRecurrence[{1, 0, 1}, {1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *) a[n_] := HypergeometricPFQ[{(1 - n)/3, (2 - n)/3, -n/3}, {(1 - n)/ 2, -n/2}, -27/4]; Table[a[n], {n, 0, 43}] (* Jean-François Alcover, Feb 26 2013 *) Table[-RootSum[1 + #^2 - #^3 &, 3 #^(n + 2) - 11 #^(n + 3) + 2 #^(n + 4) &]/31, {n, 20}] (* Eric W. Weisstein, Feb 14 2025 *)
-
Maxima
makelist(sum(binomial(n-2*k,k),k,0,n/3),n,0,18); /* Emanuele Munarini, May 24 2011 */
-
PARI
a(n)=polcoeff(exp(sum(m=1,n,((1+sqrt(1+4*x))^m + (1-sqrt(1+4*x))^m)*(x/2)^m/m)+x*O(x^n)),n) \\ Paul D. Hanna, Oct 08 2009
-
PARI
x='x+O('x^66); Vec(1/(1-(x+x^3))) \\ Joerg Arndt, May 24 2011
-
PARI
a(n)=([0,1,0;0,0,1;1,0,1]^n*[1;1;1])[1,1] \\ Charles R Greathouse IV, Feb 26 2017
-
Python
from itertools import islice def A000930_gen(): # generator of terms blist = [1]*3 while True: yield blist[0] blist = blist[1:]+[blist[0]+blist[2]] A000930_list = list(islice(A000930_gen(),30)) # Chai Wah Wu, Feb 04 2022
-
SageMath
@CachedFunction def a(n): # A000930 if (n<3): return 1 else: return a(n-1) + a(n-3) [a(n) for n in (0..80)] # G. C. Greubel, Jul 29 2022
Formula
G.f.: 1/(1-x-x^3). - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{i=0..floor(n/3)} binomial(n-2*i, i).
a(n) = a(n-2) + a(n-3) + a(n-4) for n>3.
a(n) = floor(d*c^n + 1/2) where c is the real root of x^3-x^2-1 and d is the real root of 31*x^3-31*x^2+9*x-1 (c = 1.465571... = A092526 and d = 0.611491991950812...). - Benoit Cloitre, Nov 30 2002
a(n) = Sum_{k=0..n} binomial(floor((n+2k-2)/3), k). - Paul Barry, Jul 06 2004
a(n) = Sum_{k=0..n} binomial(k, floor((n-k)/2))(1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
a(n) = Sum_{k=0..n} binomial((n+2k)/3,(n-k)/3)*(2*cos(2*Pi*(n-k)/3)+1)/3. - Paul Barry, Dec 15 2006
a(n) = term (1,1) in matrix [1,1,0; 0,0,1; 1,0,0]^n. - Alois P. Heinz, Jun 20 2008
G.f.: exp( Sum_{n>=1} ((1+sqrt(1+4*x))^n + (1-sqrt(1+4*x))^n)*(x/2)^n/n ).
Logarithmic derivative equals A001609. - Paul D. Hanna, Oct 08 2009
a(n) = a(n-1) + a(n-2) - a(n-5) for n>4. - Paul Weisenhorn, Oct 28 2011
For n >= 2, a(2*n-1) = a(2*n-2)+a(2*n-4); a(2*n) = a(2*n-1)+a(2*n-3). - Vladimir Shevelev, Apr 12 2012
INVERT transform of (1,0,0,1,0,0,1,0,0,1,...) = (1, 1, 1, 2, 3, 4, 6, ...); but INVERT transform of (1,0,1,0,0,0,...) = (1, 1, 2, 3, 4, 6, ...). - Gary W. Adamson, Jul 05 2012
G.f.: 1/(G(0)-x) where G(k) = 1 - x^2/(1 - x^2/(x^2 - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
G.f.: 1 + x/(G(0)-x) where G(k) = 1 - x^2*(2*k^2 + 3*k +2) + x^2*(k+1)^2*(1 - x^2*(k^2 + 3*k +2))/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 27 2012
a(2*n) = A002478(n), a(2*n+1) = A141015(n+1), a(3*n) = A052544(n), a(3*n+1) = A124820(n), a(3*n+2) = A052529(n+1). - Johannes W. Meijer, Jul 21 2013, corrected by Greg Dresden, Jul 06 2020
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
a(n) = v1*w1^n+v3*w2^n+v2*w3^n, where v1,2,3 are the roots of (-1+9*x-31*x^2+31*x^3): [v1=0.6114919920, v2=0.1942540040 - 0.1225496913*I, v3=conjugate(v2)] and w1,2,3 are the roots of (-1-x^2+x^3): [w1=1.4655712319, w2=-0.2327856159 - 0.7925519925*I, w3=conjugate(w2)]. - Gerry Martens, Jun 27 2015
a(n+6)^2 + a(n+1)^2 + a(n)^2 = a(n+5)^2 + a(n+4)^2 + 3*a(n+3)^2 + a(n+2)^2. - Greg Dresden, Jul 07 2021
a(n) = Sum_{i=(n-7)..(n-1)} a(i) / 2. - Jules Beauchamp, May 10 2025
Extensions
Name expanded by N. J. A. Sloane, Sep 07 2012
A052529 Expansion of (1-x)^3/(1 - 4*x + 3*x^2 - x^3).
1, 1, 4, 13, 41, 129, 406, 1278, 4023, 12664, 39865, 125491, 395033, 1243524, 3914488, 12322413, 38789712, 122106097, 384377665, 1209982081, 3808901426, 11990037126, 37743426307, 118812495276, 374009739309, 1177344897715
Offset: 0
Comments
a(n+1) is the number of distinct matrix products in (A+B+C+D)^n where commutator [A,B] = [A,C] = [B,C] = 0 but D does not commute with A, B, or C. - Paul D. Hanna and Max Alekseyev, Feb 01 2006
Starting (1, 4, 13, ...) = INVERT transform of the triangular series, (1, 3, 6, 10, ...). Example: a(5) = 129 = termwise products of (1, 1, 4, 13, 41) and (15, 10, 6, 3, 1) = (15 + 10 + 24 + 39 + 41). - Gary W. Adamson, Apr 10 2009
a(n) is the number of generalized compositions of n when there are i^2/2+i/2 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010
Dedrickson (Section 4.2) gives a bijection between colored compositions of n, where each part k has one of binomial(k+1,2) colors, and 0,1,2,3 strings of length n-1 avoiding 10, 20 and 21. Cf. A095263. For a refinement of this sequence counting binomial(k+1,2)-colored compositions by the number of parts see A127893. - Peter Bala, Sep 17 2013
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 80.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 , example 14.
- C. R. Dedrickson III, Compositions, Bijections, and Enumerations Thesis, Jack N. Averitt College of Graduate Studies, Georgia Southern University, 2012.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 459
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,1).
Crossrefs
Programs
-
Magma
I:=[1, 1, 4, 13, 41, 129]; [n le 6 select I[n] else 4*Self(n-1) -3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
-
Maple
spec := [S,{S=Sequence(Prod(Z,Sequence(Z),Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); f:= gfun:-rectoproc({a(n+4)-4*a(n+3)+3*a(n+2)-a(n+1), a(0) = 1, a(1) = 1, a(2) = 4, a(3) = 13},a(n),`remember`): seq(f(n),n=0..40); # Robert Israel, Dec 19 2014
-
Mathematica
CoefficientList[Series[(-1+x)^3/(-1+4*x-3*x^2+x^3),{x,0,40}],x] (* Vincenzo Librandi, Jun 22 2012 *) LinearRecurrence[{4,-3,1},{1,1,4,13},30] (* Harvey P. Dale, Oct 04 2015 *)
-
PARI
my(x='x+O('x^30)); Vec((1-x)^3/(1-4*x+3*x^2-x^3)) \\ G. C. Greubel, May 12 2019
-
Sage
((1-x)^3/(1-4*x+3*x^2-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
Formula
a(n) = Sum_{a=0..n} (Sum_{b=0..n} (Sum_{c=0..n} C(n-b-c,a)*C(n-a-c,b)*C(n-a-b,c))).
G.f.: (1 - x)^3/(1 - 4*x + 3*x^2 - x^3).
a(n) = 4*a(n-1) - 3*a(n-2) + a(n-3) for n>=4.
a(n) = Sum_{alpha = RootOf(-1+4*x-3*x^2+x^3)} (1/31)*(6 - 5*alpha - 3*alpha^2) * alpha^(-1-n).
For n>0, a(n) = Sum_{k=0..n-1} Sum_{i=0..k} Sum_{j=0..i} a(j). - Benoit Cloitre, Jan 26 2003
a(n) = Sum_{k=0..n} binomial(n+2*k-1, n-k). - Vladeta Jovovic, Mar 23 2003
If p[i]=i(i+1)/2 and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, May 02 2010
Recurrence equation: a(n) = Sum_{k = 1..n} 1/2*k*(k+1)*a(n-k) with a(0) = 1. - Peter Bala, Sep 19 2013
a(n) = Sum_{i=0..n} (n-i)*A052544(i) = A052544(n) - A052544(n-1) for n>=1. - Areebah Mahdia, Jul 07 2020
A371125 Number of compositions of 6*n into parts 1 and 6.
1, 2, 9, 43, 196, 882, 3970, 17887, 80608, 363254, 1636944, 7376591, 33241289, 149795989, 675029164, 3041899638, 13707783053, 61771701389, 278363253873, 1254394801761, 5652708454881, 25472931513057, 114789263420590, 517277526141329, 2331019740675071
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-15,20,-15,6,-1).
Crossrefs
Programs
-
PARI
a(n) = sum(k=0, n, binomial(n+5*k, n-k));
Formula
a(n) = A005708(6*n).
a(n) = Sum_{k=0..n} binomial(n+5*k,n-k).
a(n) = 7*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
G.f.: 1/(1 - x - x/(1 - x)^5).
A109955 Number triangle binomial(n+2k,3k).
1, 1, 1, 1, 4, 1, 1, 10, 7, 1, 1, 20, 28, 10, 1, 1, 35, 84, 55, 13, 1, 1, 56, 210, 220, 91, 16, 1, 1, 84, 462, 715, 455, 136, 19, 1, 1, 120, 924, 2002, 1820, 816, 190, 22, 1, 1, 165, 1716, 5005, 6188, 3876, 1330, 253, 25, 1, 1, 220, 3003, 11440, 18564, 15504, 7315, 2024
Offset: 0
Comments
Examples
Rows begin 1; 1,1; 1,4,1; 1,10,7,1; 1,20,28,10,1; 1,35,84,55,13,1;
Programs
-
PARI
tabl(nn) = {my(m = matrix(nn, nn, n, k, if (n
Michel Marcus, Nov 20 2015
Formula
Number triangle T(n, k) = binomial(n+2k, 3k).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k) + T(n-1,k-1). - Philippe Deléham, Feb 18 2012
G.f.: (1-x)^2/((1-x)^3-y*x). - Philippe Deléham, Feb 18 2012
Sum_{k, 0<=k<=n} T(n,k)*x^k = A185963(n), A000012(n), A052544(n), A049086(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Feb 18 2012
A204200 INVERT transform of [1, 0, 1, 3, 9, 27, 81, ...].
1, 1, 2, 6, 19, 60, 189, 595, 1873, 5896, 18560, 58425, 183916, 578949, 1822473, 5736961, 18059374, 56849086, 178955183, 563332848, 1773314929, 5582216355, 17572253481, 55315679788, 174128175064, 548137914373, 1725482812088
Offset: 1
Keywords
Comments
Same as A052544 except for beginning with an additional 1.
Number of permutations of length n>=0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second and third elements, and the fourth element is larger than the second element. - Sergey Kitaev, Dec 09 2020
Examples
x + x^2 + 2*x^3 + 6*x^4 + 19*x^5 + 60*x^6 + 189*x^7 + 595*x^8 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Index entries for linear recurrences with constant coefficients, signature (4, -3, 1).
Crossrefs
Cf. A052544.
Programs
-
Haskell
a204200 n = a204200_list !! (n-1) a204200_list = 1 : 1 : 2 : zipWith (+) a204200_list (tail $ zipWith (-) (map (* 4) (tail a204200_list)) (map (* 3) a204200_list)) -- Reinhard Zumkeller, Jan 16 2012
-
Mathematica
LinearRecurrence[{4, -3, 1}, {1, 1, 2}, 29] (* or *) Rest@ CoefficientList[Series[-1 + 1/(1 - x - x^3/(1 - 3 x)), {x, 0, 29}], x] (* Michael De Vlieger, May 06 2019 *)
-
PARI
{a(n) = if( n<1, n = 1-n; polcoeff( (1 - x)^2 / (1 - 3*x + 4*x^2 - x^3) + x * O(x^n), n), polcoeff( x * (1 - 3*x + x^2) / (1 - 4*x + 3*x^2 - x^3) + x * O(x^n), n))}
Formula
a(n) = 4*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -1 + 1 / (1 - x - x^3 / (1 - 3*x)) = x * (1 + x / (1 - x - x / (1 - x)^2)) = x * (1 - 3*x + x^2) / (1 - 4*x + 3*x^2 - x^3).
a(n+1) = Sum_{k, 0<=k<=n} A204533(n,k). - Philippe Deléham, Jan 18 2012
A052696 Expansion of e.g.f. (1-x)^2/(1-4*x+3*x^2-x^3).
1, 2, 12, 114, 1440, 22680, 428400, 9439920, 237726720, 6735052800, 212012640000, 7341338188800, 277317497318400, 11348577278438400, 500138456661043200, 23615780481925632000, 1189441481702842368000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..375
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 645
Crossrefs
Cf. A052544.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( (1-x)^2/(1-4*x+3*x^2-x^3) ))); // G. C. Greubel, May 31 2022 -
Maple
spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Z),Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
With[{nn=20},CoefficientList[Series[(1-x)^2/(1-4x+3x^2-x^3),{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Aug 28 2012 *)
-
SageMath
@CachedFunction def b(n): # b = A052544 if (n<3): return factorial(n+1) else: return 4*b(n-1) - 3*b(n-2) + b(n-3) def A052696(n): return factorial(n)*b(n) [A052696(n) for n in (0..40)] # G. C. Greubel, May 31 2022
Formula
E.g.f.: (1 - x)^2/(1 - 4*x + 3*x^2 - x^3).
D-finite recurrence: a(0)=1, a(1)=2, a(2)=12, a(n) = 2*n*a(n-1) - 3*n*(n-1)*a(n-2) + n*(n-1)*(n-2)*a(n-3).
a(n) = n! * Sum_{alpha=RootOf(-1 +4*Z -3*Z^2 +Z^3)} (1/31)*(4 + 7*alpha - 2*alpha^2)*alpha^(-1-n).
a(n) = n! * A052544(n). - G. C. Greubel, May 31 2022
A373890 Number of compositions of 8*n into parts 1 and 8.
1, 2, 11, 64, 345, 1824, 9661, 51284, 272333, 1445995, 7677250, 40760798, 216412235, 1149004281, 6100444144, 32389272248, 171965334801, 913020717480, 4847528344990, 25737127996244, 136646907481155, 725503534206186, 3851937726561990, 20451208781128462
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (9,-28,56,-70,56,-28,8,-1).
Programs
-
PARI
a(n) = sum(k=0, n, binomial(n+7*k, n-k));
Formula
a(n) = A005710(8*n).
a(n) = Sum_{k=0..n} binomial(n+7*k,n-k).
a(n) = 9*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: 1/(1 - x - x/(1 - x)^7).
Comments