cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A368475 Expansion of o.g.f. (1-x)^5/((1-x)^5 - x^4).

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 15, 35, 71, 136, 265, 550, 1211, 2732, 6126, 13485, 29191, 62648, 134408, 289656, 627401, 1363124, 2963186, 6434484, 13951852, 30221185, 65442625, 141745045, 307137901, 665732417, 1443184210, 3128438335, 6780867186, 14696002913, 31848721632
Offset: 0

Views

Author

Enrique Navarrete, Dec 26 2023

Keywords

Comments

For n > 0, a(n) is the number of ways to split [n] into an unspecified number of intervals and then choose 4 blocks (i.e., subintervals) from each interval. For example, for n=12, a(12)=1211 since the number of ways to split [12] into intervals and then select 4 blocks from each interval is C(12,4) + C(8,4)*C(4,4) + C(7,4)*C(5,4) + C(6,4)*C(6,4) + C(5,4)*C(7,4) + C(4,4)*C(8,4) + C(4,4)*C(4,4)*C(4,4) for a total of 1211 ways.
For n > 0, a(n) is also the number of compositions of n using parts of size at least 4 where there are binomial(i,4) types of i, i >= 4 (see example).
Number of compositions of 5*n-4 into parts 4 and 5. - Seiichi Manyama, Feb 01 2024

Examples

			Since there are C(4,4) = 1 type of 4, C(5,4) = 5 types of 5, C(6,4) = 15 types of 6, C(7,4) = 35 types of 7, C(8,4) = 70 types of 8, and (12,4) = 495 types of 12, we can write 12 in the following ways:
  12: 495 ways;
  8+4: 70 ways;
  7+5: 175 ways;
  6+6: 225 ways;
  5+7: 175 ways;
  4+8: 70 ways;
  4+4+4: 1 way, for a total of 1211 ways.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)^5/((1 - x)^5 - x^4), {x, 0, 50}], x] (* Wesley Ivan Hurt, Dec 26 2023 *)
  • PARI
    Vec((1-x)^5/((1-x)^5 - x^4) + O(x^40)) \\ Michel Marcus, Dec 27 2023

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 4*a(n-4) + a(n-5), n>=6; a(0)=1, a(1)=a(2)=a(3)=0, a(4)=1, a(5)=5.
G.f.: 1/(1-Sum_{k>=4} binomial(k,4)*x^k).
G.f.: 1/p(S), where p(S) = 1 - S^4 - S^5 and S = x/(1-x).
First differences of A099131. - R. J. Mathar, Jan 29 2024
a(n) = A017827(5*n-4) = Sum_{k=0..floor((5*n-4)/4)} binomial(k,5*n-4-4*k) for n > 0. - Seiichi Manyama, Feb 01 2024
a(n) = Sum_{k=0..floor(n/4)} binomial(n-1+k,n-4*k). - Seiichi Manyama, Feb 02 2024

A369804 Expansion of 1/(1 - x^3/(1-x)^5).

Original entry on oeis.org

1, 0, 0, 1, 5, 15, 36, 80, 181, 431, 1060, 2617, 6401, 15521, 37513, 90741, 219918, 533619, 1295022, 3141826, 7619870, 18478155, 44810670, 108676262, 263576791, 639267800, 1550434777, 3760269946, 9119740067, 22118021213, 53642768716, 130099857234, 315531401964
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 5*n-3 into parts 3 and 5.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x^3/(1-x)^5))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-1+2*k, n-3*k));

Formula

a(n) = A052920(5*n-3) for n > 0.
a(n) = 5*a(n-1) - 10*a(n-2) + 11*a(n-3) - 5*a(n-4) + a(n-5) for n > 5.
a(n) = Sum_{k=0..floor(n/3)} binomial(n-1+2*k,n-3*k).
a(n) = A369845(n) - A369845(n-1). - R. J. Mathar, Feb 14 2024

A369836 Number of compositions of 5*n into parts 1 and 5.

Original entry on oeis.org

1, 2, 8, 34, 140, 571, 2328, 9496, 38740, 158045, 644761, 2630364, 10730820, 43777405, 178594110, 728591751, 2972359720, 12126025705, 49469281395, 201814663875, 823322219501, 3358821723401, 13702634402876, 55901207340276, 228054320813276, 930369409108152
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -10, 10, -5, 1}, {1, 2, 8, 34, 140}, 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k, n-k));

Formula

a(n) = A003520(5*n).
a(n) = Sum_{k=0..n} binomial(n+4*k,n-k).
a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: (1-x)^4/((1-x)^5 - x).

A369803 Expansion of 1/(1 - x^2/(1-x)^5).

Original entry on oeis.org

1, 0, 1, 5, 16, 45, 126, 361, 1046, 3032, 8771, 25348, 73252, 211724, 612009, 1769080, 5113647, 14781237, 42725841, 123501151, 356986401, 1031887518, 2982723523, 8621714049, 24921502864, 72036871920, 208226244217, 601888555723, 1739789499591, 5028950081882
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 5*n-2 into parts 2 and 5.

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-x^2/(1-x)^5))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-1+3*k, n-2*k));

Formula

a(n) = A001687(5*n-1) for n > 0.
a(n) = 5*a(n-1) - 9*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-1+3*k,n-2*k).
a(n) = A369840(n)-A369840(n-1). - R. J. Mathar, Feb 14 2024

A099239 Square array read by antidiagonals associated with sections of 1/(1-x-x^k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 21, 13, 5, 1, 1, 32, 55, 41, 19, 6, 1, 1, 64, 144, 129, 69, 26, 7, 1, 1, 128, 377, 406, 250, 106, 34, 8, 1, 1, 256, 987, 1278, 907, 431, 153, 43, 9, 1, 1, 512, 2584, 4023, 3292, 1757, 686, 211, 53, 10, 1, 1, 1024, 6765, 12664, 11949, 7168, 3088, 1030, 281, 64, 11, 1
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

Rows include A099242, A099253. Columns include A034856. Main diagonal is A099240. Sums of antidiagonals are A099241.

Examples

			Rows begin
  1, 1,  1,   1,   1, ...                               A000012;
  1, 2,  4,   8,  16, ...      1-section of 1/(1-x-x)   A000079;
  1, 3,  8,  21,  55, ....     bisection of 1/(1-x-x^2) A001906;
  1, 4, 13,  41, 129, ...     trisection of 1/(1-x-x^3) A052529; (essentially)
  1, 5, 19,  69, 250, ...  quadrisection of 1/(1-x-x^4) A055991;
  1, 6, 26, 106, 431, ...  quintisection of 1/(1-x-x^5) A079675; (essentially)
		

Crossrefs

Programs

  • Magma
    A099239:= func< n,k | (&+[Binomial(k*(n-k) -(k-1)*(j-1), j): j in [0..n-k]]) >;
    [A099239(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
  • Mathematica
    T[n_, k_]:= Sum[Binomial[k*(n-k) - (k-1)*(j-1), j], {j,0,n-k}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    def A099239(n,k): return sum( binomial(k*(n-k) -(k-1)*(j-1), j) for j in (0..n-k) )
    flatten([[A099239(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
    

Formula

T(n, k) = Sum_{j=0..n} binomial(k*n -(k-1)*(j-1), j), n, k>=0. (square array)
T(n, k) = Sum_{j=0..n} binomial(k + (n-1)*(j+1), n*(j+1) -1), n>0. (square array)
T(n, k) = Sum_{j=0..n-k} binomial(k*(n-k) - (k-1)*(j-1), j). (number triangle)
Rows of the square array are generated by 1/((1-x)^k-x).
Rows satisfy a(n) = a(n-1) - Sum_{k=1..n} (-1)^(k^binomial(n, k)) * a(n-k).

A369837 Number of compositions of 5*n-2 into parts 1 and 5.

Original entry on oeis.org

1, 5, 20, 80, 325, 1326, 5411, 22076, 90061, 367411, 1498887, 6114853, 24946129, 101770120, 415180936, 1693770328, 6909898016, 28189589705, 115002126790, 469162173146, 1913991948274, 7808313175575, 31854760257925, 129954540535600, 530161974821876
Offset: 1

Views

Author

Seiichi Manyama, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -10, 10, -5, 1}, {1, 5, 20, 80, 325}, 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+2+4*k, n-1-k));

Formula

a(n) = A003520(5*n-2).
a(n) = Sum_{k=0..n} binomial(n+2+4*k,n-1-k).
a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(1-x)/((1-x)^5 - x).

A369838 Number of compositions of 5*n-3 into parts 1 and 5.

Original entry on oeis.org

1, 4, 15, 60, 245, 1001, 4085, 16665, 67985, 277350, 1131476, 4615966, 18831276, 76823991, 313410816, 1278589392, 5216127688, 21279691689, 86812537085, 354160046356, 1444829775128, 5894321227301, 24046447082350, 98099780277675, 400207434286276, 1632684497403029
Offset: 1

Views

Author

Seiichi Manyama, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -10, 10, -5, 1}, {1, 4, 15, 60, 245}, 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+1+4*k, n-1-k));

Formula

a(n) = A003520(5*n-3).
a(n) = Sum_{k=0..n} binomial(n+1+4*k,n-1-k).
a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(1-x)^2/((1-x)^5 - x).

A369839 Number of compositions of 5*n-4 into parts 1 and 5.

Original entry on oeis.org

1, 3, 11, 45, 185, 756, 3084, 12580, 51320, 209365, 854126, 3484490, 14215310, 57992715, 236586825, 965178576, 3937538296, 16063564001, 65532845396, 267347509271, 1090669728772, 4449491452173, 18152125855049, 74053333195325, 302107654008601, 1232477063116753
Offset: 1

Views

Author

Seiichi Manyama, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -10, 10, -5, 1}, {1, 3, 11, 45, 185}, 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k, n-1-k));

Formula

a(n) = A003520(5*n-4).
a(n) = Sum_{k=0..n} binomial(n+4*k,n-1-k).
a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(1-x)^3/((1-x)^5 - x).

A365084 G.f. satisfies A(x) = 1 + x*A(x) / (1 + x)^5.

Original entry on oeis.org

1, 1, -4, 6, 6, -49, 95, 24, -592, 1417, -414, -6809, 20142, -14831, -73353, 274761, -311105, -715647, 3607624, -5463428, -5785294, 45588556, -87189477, -25565196, 552659892, -1305250324, 340413165, 6379267117, -18606431142, 13202513476, 69064770845
Offset: 0

Views

Author

Seiichi Manyama, Aug 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-4, -10, -10, -5, -1}, {1, 1, -4, 6, 6, -49}, 1 + 30] (* Robert P. P. McKone, Aug 21 2023 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n+4*k-1, n-k));

Formula

G.f.: A(x) = 1/( 1 - x/(1+x)^5 ).
a(n) = -4*a(n-1) - 10*a(n-2) - 10*a(n-3) - 5*a(n-4) - a(n-5) for n > 5.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+4*k-1,n-k).
Showing 1-9 of 9 results.