cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369836 Number of compositions of 5*n into parts 1 and 5.

Original entry on oeis.org

1, 2, 8, 34, 140, 571, 2328, 9496, 38740, 158045, 644761, 2630364, 10730820, 43777405, 178594110, 728591751, 2972359720, 12126025705, 49469281395, 201814663875, 823322219501, 3358821723401, 13702634402876, 55901207340276, 228054320813276, 930369409108152
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -10, 10, -5, 1}, {1, 2, 8, 34, 140}, 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k, n-k));

Formula

a(n) = A003520(5*n).
a(n) = Sum_{k=0..n} binomial(n+4*k,n-k).
a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: (1-x)^4/((1-x)^5 - x).

A373928 Number of compositions of 7*n-2 into parts 1 and 7.

Original entry on oeis.org

1, 7, 35, 168, 819, 4025, 19796, 97315, 478304, 2350860, 11554621, 56791883, 279136551, 1371977475, 6743373646, 33144194898, 162906243014, 800696596250, 3935484773527, 19343207491818, 95073338508548, 467292702057555, 2296779231936167, 11288844908179562
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*HypergeometricPFQ[{1-n, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6, (10+n)/6}, {6/7, 8/7, 9/7, 10/7, 11/7, 12/7}, -6^6/7^7]/120; Array[a,24] (* Stefano Spezia, Jun 23 2024 *)
    LinearRecurrence[{8,-21,35,-35,21,-7,1},{1,7,35,168,819,4025,19796},40] (* Harvey P. Dale, Jul 28 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+4+6*k, n-1-k));

Formula

a(n) = A005709(7*n-2).
a(n) = Sum_{k=0..n} binomial(n+4+6*k,n-1-k).
a(n) = 8*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1-x)/((1-x)^7 - x).
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*hypergeom([1-n, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6, (10+n)/6], [6/7, 8/7, 9/7, 10/7, 11/7, 12/7], -6^6/7^7)/120. - Stefano Spezia, Jun 23 2024

A369838 Number of compositions of 5*n-3 into parts 1 and 5.

Original entry on oeis.org

1, 4, 15, 60, 245, 1001, 4085, 16665, 67985, 277350, 1131476, 4615966, 18831276, 76823991, 313410816, 1278589392, 5216127688, 21279691689, 86812537085, 354160046356, 1444829775128, 5894321227301, 24046447082350, 98099780277675, 400207434286276, 1632684497403029
Offset: 1

Views

Author

Seiichi Manyama, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -10, 10, -5, 1}, {1, 4, 15, 60, 245}, 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+1+4*k, n-1-k));

Formula

a(n) = A003520(5*n-3).
a(n) = Sum_{k=0..n} binomial(n+1+4*k,n-1-k).
a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(1-x)^2/((1-x)^5 - x).

A369839 Number of compositions of 5*n-4 into parts 1 and 5.

Original entry on oeis.org

1, 3, 11, 45, 185, 756, 3084, 12580, 51320, 209365, 854126, 3484490, 14215310, 57992715, 236586825, 965178576, 3937538296, 16063564001, 65532845396, 267347509271, 1090669728772, 4449491452173, 18152125855049, 74053333195325, 302107654008601, 1232477063116753
Offset: 1

Views

Author

Seiichi Manyama, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -10, 10, -5, 1}, {1, 3, 11, 45, 185}, 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k, n-1-k));

Formula

a(n) = A003520(5*n-4).
a(n) = Sum_{k=0..n} binomial(n+4*k,n-1-k).
a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(1-x)^3/((1-x)^5 - x).
Showing 1-4 of 4 results.