cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127898 Inverse of Riordan array (1/(1+x)^3, x/(1+x)^3).

Original entry on oeis.org

1, 3, 1, 12, 6, 1, 55, 33, 9, 1, 273, 182, 63, 12, 1, 1428, 1020, 408, 102, 15, 1, 7752, 5814, 2565, 760, 150, 18, 1, 43263, 33649, 15939, 5313, 1265, 207, 21, 1, 246675, 197340, 98670, 35880, 9750, 1950, 273, 24, 1
Offset: 0

Views

Author

Paul Barry, Feb 04 2007

Keywords

Comments

The convolution triangle of A001764 (number of ternary trees). - Peter Luschny, Oct 09 2022

Examples

			Triangle begins:
1,
3, 1,
12, 6, 1,
55, 33, 9, 1,
273, 182, 63, 12, 1,
1428, 1020, 408, 102, 15, 1,
7752, 5814, 2565, 760, 150, 18, 1,
43263, 33649, 15939, 5313, 1265, 207, 21, 1,
246675, 197340, 98670, 35880, 9750, 1950, 273, 24, 1,
1430715, 1170585, 610740, 237510, 71253, 16443, 2842, 348, 27, 1,
8414640, 7012200, 3786588, 1553472, 503440, 129456, 26040, 3968, 432, 30, 1
		

Crossrefs

First column is A001764(n+1).
Row sums are A047099.
Inverse of A127895.

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->(k+1)/(n+1)*Binomial(3*n+3,n-k)))); # Muniru A Asiru, Apr 30 2018
  • Magma
    /* As triangle: */ [[(k+1)/(n+1)*Binomial(3*n+3,n-k): k in [0..n]]: n in [0..8]];  // Bruno Berselli, Jan 17 2013
    
  • Maple
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> binomial(3*n, n)/(2*n+1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    Table[If[k == 0, Binomial[3*n, n-k]/(2*n+1), ((k+1)/n)*Binomial[3*n, n-k -1]], {n,1,10}, {k,0,n-1}]//Flatten (* G. C. Greubel, Apr 29 2018 *)
  • PARI
    for(n=1,10, for(k=0,n-1, print1(if(k==0, binomial(3*n, n-k)/( 2*n +1), ((k+1)/n)*binomial(3*n, n-k-1)), ", "))) \\ G. C. Greubel, Apr 29 2018
    

Formula

T(n,k) = (k+1)/(n+1)*binomial(3*n+3,n-k). - Vladimir Kruchinin, Jan 17 2013
G.f.: 1/(-y + 1/(-1 + (2*sin(1/3 *arcsin((3*sqrt(3*x))/2)))/(
sqrt(3*x))))/x. - Vladimir Kruchinin, Feb 14 2023