cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127902 Series reversion of x/(1 + x + x^4).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 75, 163, 391, 991, 2498, 6150, 15016, 37116, 93481, 238137, 607921, 1550401, 3959335, 10155615, 26182267, 67753907, 175713561, 456422121, 1187771521, 3097869841, 8097629671, 21207212047, 55628797891, 146129168651, 384401493333, 1012608918421
Offset: 1

Views

Author

Paul Barry, Feb 05 2007

Keywords

Comments

Binomial transform of A002293, with three interpolated zeros (series reversion of x/(1+x^4)).
Also the number of rooted labeled trees where each node has 0, 1, or 4 children. - Patrick Devlin, Mar 04 2012
Number of lattice paths from (0,0) to (n-1,0) that do not go below the x-axis or above the diagonal x=y and consist of steps u=(1,1), H=(1,0) and D=(1,-3); a(7) = 16: HHHHHH, uuuDHH, HuuuDH, uHuuDH, uuHuDH, uuuHDH, HHuuuD, HuHuuD, uHHuuD, HuuHuD, uHuHuD, uuHHuD, HuuuHD, uHuuHD, uuHuHD, uuuHHD. - Alois P. Heinz, Apr 14 2014

Crossrefs

Cf. A240904.

Programs

  • Magma
    [(&+[Binomial(n,4*k)*Binomial(4*k,k)/(3*k+1): k in [0..Floor(n/4)]]): n in [0..30]]; // G. C. Greubel, Apr 30 2018
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x/(1+x+x^4),{x,0,20}],x],x]] (* Vaclav Kotesovec, Aug 20 2013 *)
  • PARI
    for(n=0, 30, print1(sum(k=0,floor(n/4), binomial(n,4*k) *binomial(4*k,k)/(3*k+1)), ", ")) \\ G. C. Greubel, Apr 30 2018
    

Formula

a(n) = Sum_{k=0..floor(n/4)} C(n,4k)*C(4k,k)/(3k+1).
Recurrence: 3*(n-1)*(3*n-7)*(3*n+1)*a(n) = 3*(2*n-3)*(18*n^2 - 54*n + 29)*a(n-1) - 3*(n-2)*(54*n^2 - 216*n + 209)*a(n-2) + 54*(n-3)*(n-2)*(2*n-5)*a(n-3) + 229*(n-4)*(n-3)*(n-2)*a(n-4). - Vaclav Kotesovec, Aug 20 2013
a(n) ~ sqrt(4+3^(3/4))*3^(1/4) * (1+4/3*3^(1/4))^n /(12*sqrt(Pi/2) *n^(3/2)). - Vaclav Kotesovec, Aug 20 2013
G.f. A(x) satisfies: A(x) = x * (1 + A(x) + A(x)^4). - Ilya Gutkovskiy, Jul 01 2020

Extensions

Offset corrected by Vaclav Kotesovec, Aug 20 2013
More terms from Vincenzo Librandi, Apr 15 2014