1, 0, 2, 0, 1, 3, 0, 1, 2, 4, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 6, 0, 1, 2, 3, 4, 5, 7, 0, 1, 2, 3, 4, 5, 6, 8, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 0, 1, 2, 3
Offset: 1
First few rows of the triangle are:
1;
0, 2;
0, 1, 3;
0, 1, 2, 4;
0, 1, 2, 3, 5;
0, 1, 2, 3, 4, 6;
0, 1, 2, 3, 4, 5, 7;
...
Original entry on oeis.org
1, 3, 2, 7, 5, 3, 13, 10, 7, 4, 21, 17, 13, 9, 5, 31, 26, 21, 16, 11, 6, 43, 37, 31, 25, 19, 13, 7, 57, 50, 43, 36, 29, 22, 15, 8, 73, 65, 57, 49, 41, 33, 25, 17, 9, 91, 82, 73, 64, 55, 46, 37, 28, 19, 10
Offset: 1
First few rows of the triangle:
1;
3, 2;
7, 5, 3;
13, 10, 7, 4;
21, 17, 13, 9, 5;
31, 26, 21, 16, 11, 6;
43, 37, 31, 25, 19, 13, 7;
...
Original entry on oeis.org
1, 2, 2, 3, 5, 3, 4, 9, 8, 4, 5, 14, 15, 11, 5, 6, 20, 24, 21, 14, 6, 7, 27, 35, 34, 27, 17, 7, 8, 35, 48, 50, 44, 33, 20, 8, 9, 44, 63, 69, 65, 54, 39, 23, 9, 10, 54, 80, 91, 90, 80, 64, 45, 26, 10
Offset: 1
First few rows of the triangle:
1;
2, 2;
3, 5, 3;
4, 9, 8, 4;
5, 14, 15, 11, 5;
6, 20, 24, 21, 14, 6;
7, 27, 35, 34, 27, 17, 7;
...
Original entry on oeis.org
1, 5, 2, 15, 8, 3, 34, 21, 11, 4, 65, 44, 27, 14, 5, 111, 80, 54, 33, 17, 6, 175, 132, 95, 64, 39, 20, 7, 260, 203, 153, 110, 74, 45, 23, 8, 369, 296, 231, 174, 125, 84, 51, 26, 9, 505, 414, 332, 259, 195, 140, 94, 57, 29, 10
Offset: 1
First few rows of the triangle:
1;
5, 2;
15, 8, 3;
34, 21, 11, 4;
65, 44, 27, 14, 5;
111, 80, 54, 33, 17, 6;
175, 132, 95, 64, 39, 20, 7;
...
Original entry on oeis.org
1, 3, 10, 28, 72, 176, 416, 960, 2176, 4864, 10752, 23552, 51200, 110592, 237568, 507904, 1081344, 2293760, 4849664, 10223616, 21495808, 45088768, 94371840, 197132288, 411041792, 855638016, 1778384896, 3690987520, 7650410496, 15837691904, 32749125632, 67645734912, 139586437120, 287762808832
Offset: 1
a(4) = 28 = sum of row 4 of A128134 = 3 + 10 + 11 + 4.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Sela Fried, On integer sequence A128135, 2024.
- Sela Fried, Proofs of some Conjectures from the OEIS, arXiv:2410.07237 [math.NT], 2024. See p. 11.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
-
I:=[1, 3, 10]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
-
CoefficientList[Series[(1-x+2*x^2)/(1-2*x)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 28 2012 *)
LinearRecurrence[{4,-4},{1,3,10},40] (* Harvey P. Dale, May 26 2023 *)
-
a(n)=if(n<=2,[1,3][n],2*a(n-1)+2^(n-1)); /* Joerg Arndt, Sep 29 2012 */
More terms from Philipp Zumstein (zuphilip(AT)inf.ethz.ch), Oct 05 2009
Comments