cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128132 A natural number transform, companion to A127701.

Original entry on oeis.org

1, -1, 2, 0, -1, 3, 0, 0, -1, 4, 0, 0, 0, -1, 5, 0, 0, 0, 0, -1, 6, 0, 0, 0, 0, 0, -1, 7, 0, 0, 0, 0, 0, 0, -1, 8, 0, 0, 0, 0, 0, 0, 0, -1, 9, 0, 0, 0, 0, 0, 0, 0, 0, -1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 12
Offset: 1

Views

Author

Gary W. Adamson, Feb 15 2007

Keywords

Comments

Binomial transform is A128133.

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins:
   1;
  -1,  2;
   0, -1,  3;
   0,  0, -1,  4;
   0,  0,  0, -1,  5;
   0,  0,  0,  0, -1, 6;
   ...
		

Crossrefs

Programs

  • Maple
    A128132 := proc(n,k)
        if n = k then
            n;
        elif k = n-1 then
            -1 ;
        else
            0 ;
        end if;
    end proc: # R. J. Mathar, Apr 26 2016
  • Mathematica
    {1}~Join~Table[PadLeft[{-1, n}, n], {n, 2, 12}] // Flatten (* Michael De Vlieger, Apr 26 2016 *)

Formula

T(n,n) = n.
T(n,n-1) = -1.
T(n,k) = 0 for k <> n, n-1.

A128135 Row sums of A128134.

Original entry on oeis.org

1, 3, 10, 28, 72, 176, 416, 960, 2176, 4864, 10752, 23552, 51200, 110592, 237568, 507904, 1081344, 2293760, 4849664, 10223616, 21495808, 45088768, 94371840, 197132288, 411041792, 855638016, 1778384896, 3690987520, 7650410496, 15837691904, 32749125632, 67645734912, 139586437120, 287762808832
Offset: 1

Views

Author

Gary W. Adamson, Feb 16 2007

Keywords

Comments

Conjecture: a(n)/a(n-1) tends to sqrt(5). (E.g., a(10)/a(9) = 2.235294....)
The conjecture is false. The fraction a(n)/a(n-1) tends to 2 as n grows. - Philipp Zumstein (zuphilip(AT)inf.ethz.ch), Oct 05 2009
This sequence is a subsequence of a greedily and recursively defined sequence (see links). - Sela Fried, Aug 30 2024
For n>=2, a(n) is the total number of ones in runs of ones of length >=3 over all binary strings of length n+1. - Félix Balado, Aug 06 2025

Examples

			a(4) = 28 = sum of row 4 of A128134 = 3 + 10 + 11 + 4.
		

Crossrefs

Programs

  • Magma
    I:=[1, 3, 10]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
    
  • Mathematica
    CoefficientList[Series[(1-x+2*x^2)/(1-2*x)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 28 2012 *)
    LinearRecurrence[{4,-4},{1,3,10},40] (* Harvey P. Dale, May 26 2023 *)
  • PARI
    a(n)=if(n<=2,[1,3][n],2*a(n-1)+2^(n-1)); /* Joerg Arndt, Sep 29 2012 */

Formula

Row sums of A128134.
Equals A134315 * [1, 2, 3, ...]. - Gary W. Adamson, Oct 19 2007
a(n) = 2*a(n-1) + 2^(n-1) for n >= 2. - Philipp Zumstein (zuphilip(AT)inf.ethz.ch), Oct 05 2009
From Colin Barker, May 29 2012: (Start)
a(n) = 2^(n - 2)*(2*n - 1) for n > 1.
a(n) = 4*a(n-1) - 4*a(n-2) for n > 3.
G.f.: x*(1 - x + 2*x^2)/(1 - 2*x)^2. (End)
G.f.: (1 - G(0))/2 where G(k) = 1 - (2*k + 2)/(1 - x/(x - (k + 1)/G(k+1))) (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
From Amiram Eldar, Aug 05 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*sqrt(2)*arcsinh(1) - 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(2)*arccot(sqrt(2)) - 1. (End)

Extensions

More terms from Philipp Zumstein (zuphilip(AT)inf.ethz.ch), Oct 05 2009
Incorrect formula deleted by Colin Barker, May 29 2012

A128134 A128132 * A007318.

Original entry on oeis.org

1, 1, 2, 2, 5, 3, 3, 10, 11, 4, 4, 17, 27, 19, 5, 5, 26, 54, 56, 29, 6, 6, 37, 95, 130, 100, 41, 7, 7, 50, 153, 260, 265, 162, 55, 8, 8, 65, 231, 469, 595, 483, 245, 71, 9, 9, 82, 332, 784, 1190, 1204, 812, 352, 89, 10
Offset: 1

Views

Author

Gary W. Adamson, Feb 15 2007

Keywords

Comments

A007318 * A128132 = A128133. Row sums = A128135: (1, 3, 10, 28, 72, 176, ...).

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins:
  1;
  1,  2;
  2,  5,  3;
  3, 10, 11,   4;
  4, 17, 27,  19,   5;
  5, 26, 54,  56,  29,  6;
  6, 37, 95, 130, 100, 41, 7;
  ...
		

Crossrefs

Formula

A128132 * A007318 as infinite lower triangular matrices (assuming the top of the Pascal triangle A007318 is shifted from (0,0) to (1,1)).
From Petros Hadjicostas, Jul 26 2020: (Start)
T(n,k) = n*binomial(n-1, k-1) - binomial(n-2, k-1)*[n <> k] for 1 <= k <= n, where [ ] is the Iverson bracket.
Bivariate o.g.f.: x*y*(1 - x + x^2*(1 + y))/(1 - x*(1 + y))^2.
T(n,k) = T(n-1,k) + T(n-1,k-1) + binomial(n-1,k-1) for 2 <= k <= n with (n,k) <> (2,2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) - T(n-2,k-2) + 2*T(n-1,k-1) - 2*T(n-2,k-1) for 3 <= k <= n with (n,k) <> (3,3).
T(n,1) = n - 1 for n >= 2.
T(n,2) = A002522(n-1) for n >= 2.
T(n,3) = A164845(n-3) for n >= 3.
T(n,4) = A332697(n-3) for n >= 4.
T(n,n) = n for n >= 1.
T(n,n-1) = A028387(n-2) for n >= 2. (End)
Showing 1-3 of 3 results.