A128418
a(n) = Sum_{k=0..n} 2^(n-k)*C(2n,n-k).
Original entry on oeis.org
1, 5, 33, 233, 1697, 12585, 94449, 714873, 5445441, 41687369, 320420753, 2471008281, 19108837601, 148123058153, 1150532419377, 8952614975673, 69772391628417, 544532315255433, 4255064364533457, 33287174505889113, 260669265451935777, 2043172307192457513, 16028314647309873777
Offset: 0
-
Table[Sum[2^(n-k) Binomial[2n,n-k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jan 06 2013 *)
-
x='x +O('x^50); Vec(8*x/(sqrt(1-8*x)*(sqrt(1-8*x)+12*x-1))) \\ G. C. Greubel, Feb 09 2017
A128414
Riordan array ((1-2x)/(1+2x),x/(1+2x)^2).
Original entry on oeis.org
1, -4, 1, 8, -8, 1, -16, 36, -12, 1, 32, -128, 80, -16, 1, -64, 400, -400, 140, -20, 1, 128, -1152, 1680, -896, 216, -24, 1, -256, 3136, -6272, 4704, -1680, 308, -28, 1, 512, -8192, 21504, -21504, 10560, -2816
Offset: 0
Triangle begins
1;
-4, 1;
8, -8, 1;
-16, 36, -12, 1;
32, -128, 80, -16, 1;
-64, 400, -400, 140, -20, 1;
128, -1152, 1680, -896, 216, -24, 1;
-256, 3136, -6272, 4704, -1680, 308, -28, 1;
512, -8192, 21504, -21504, 10560, -2816, 416, -32, 1;
A128413
Inverse of number triangle A128412.
Original entry on oeis.org
1, 2, 1, 12, 8, 1, 80, 60, 12, 1, 560, 448, 112, 16, 1, 4032, 3360, 960, 180, 20, 1, 29568, 25344, 7920, 1760, 264, 24, 1, 219648, 192192, 64064, 16016, 2912, 364, 28, 1, 1647360, 1464320, 512512, 139776, 29120, 4480, 480, 32, 1, 12446720
Offset: 0
Triangle begins
1,
2, 1,
12, 8, 1,
80, 60, 12, 1,
560, 448, 112, 16, 1,
4032, 3360, 960, 180, 20, 1,
29568, 25344, 7920, 1760, 264, 24, 1,
219648, 192192, 64064, 16016, 2912, 364, 28, 1
A128419
Expansion of 8/(sqrt(1-8*x)*(sqrt(1-8*x)+4*x+7)).
Original entry on oeis.org
1, 4, 25, 168, 1181, 8524, 62609, 465616, 3495013, 26423604, 200920985, 1534936440, 11771854381, 90578698396, 698921030945, 5406132020128, 41905249405301, 325434733291396, 2531523208218665, 19721766268370248, 153847524455503421, 1201601094053039596, 9395224234956935345
Offset: 0
-
CoefficientList[Series[8/(Sqrt[1-8x](Sqrt[1-8x]+4x+7)),{x,0,30}],x] (* Harvey P. Dale, Apr 24 2012 *)
Table[Sum[2^(n-2*k)*Binomial[2*n-2*k,n-2*k], {k,0,Floor[n/2]}],{n,0,50}] (* G. C. Greubel, Feb 09 2017 *)
-
x='x+O('x^50); Vec(8/(sqrt(1-8*x)*(sqrt(1-8*x)+4*x+7))) \\ G. C. Greubel, Feb 09 2017
A386670
Number of ternary strings of length 2*n that have more 0's than the combined number of 1's and 2's.
Original entry on oeis.org
0, 1, 9, 73, 577, 4521, 35313, 275577, 2150721, 16793929, 131230609, 1026283545, 8032614625, 62921342953, 493262044977, 3869724080313, 30379987189377, 238661880787593, 1876072096450257, 14756076838714713, 116126703647975457, 914363729294862633, 7203083947383222897
Offset: 0
a(1)=1 since the string of length 2 is 00.
a(2)=9 since the strings of length 4 are the 4 permutations of 0001, the 4 permutations of 0002, and 0000.
a(4)=577 since the strings of length 8 are (number of permutations in parentheses): 00000001 (8), 00000002 (8), 00000011 (28), 00000012 (56), 00000022 (28), 00000111 (56), 00000112 (168), 00000122 (168), 00000222 (56), 00000000 (1).
A386825
Triangle read by rows: T(n,k) = 3^(n-k)*C(2*n,n-k).
Original entry on oeis.org
1, 6, 1, 54, 12, 1, 540, 135, 18, 1, 5670, 1512, 252, 24, 1, 61236, 17010, 3240, 405, 30, 1, 673596, 192456, 40095, 5940, 594, 36, 1, 7505784, 2189187, 486486, 81081, 9828, 819, 42, 1, 84440070, 25019280, 5837832, 1061424, 147420, 15120, 1080, 48, 1, 956987460, 287096238
Offset: 0
Triangle begins:
1;
6, 1;
54, 12, 1;
540, 135, 18, 1;
5670, 1512, 252, 24, 1;
61236, 17010, 3240, 405, 30, 1;
673596, 192456, 40095, 5940, 594, 36, 1;
7505784, 2189187, 486486, 81081, 9828, 819, 42, 1;
...
-
Flatten[Table[3^(n-k) Binomial[2n, n-k], {n, 0, 9}, {k, 0, n}]]
Showing 1-6 of 6 results.
Comments