A128417
Number triangle T(n,k) = 2^(n-k)*C(2*n,n-k).
Original entry on oeis.org
1, 4, 1, 24, 8, 1, 160, 60, 12, 1, 1120, 448, 112, 16, 1, 8064, 3360, 960, 180, 20, 1, 59136, 25344, 7920, 1760, 264, 24, 1, 439296, 192192, 64064, 16016, 2912, 364, 28, 1, 3294720, 1464320, 512512, 139776, 29120, 4480, 480, 32, 1
Offset: 0
Triangle begins:
1,
4, 1,
24, 8, 1,
160, 60, 12, 1,
1120, 448, 112, 16, 1,
8064, 3360, 960, 180, 20, 1,
59136, 25344, 7920, 1760, 264, 24, 1,
439296, 192192, 64064, 16016, 2912, 364, 28, 1
...
-
Flatten[Table[2^(n-k) Binomial[2n,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Nov 02 2011 *)
A243019
Expansion of -(2*x*sqrt(1-8*x^2)-2*x) / (16*x^3+sqrt(1-8*x^2)*(4*x^2+2*x-1)-8*x^2-2*x+1).
Original entry on oeis.org
1, 1, 5, 7, 33, 51, 233, 379, 1697, 2851, 12585, 21627, 94449, 165075, 714873, 1266027, 5445441, 9746883, 41687369, 75275227, 320420753, 582881971, 2471008281, 4523575371, 19108837601, 35174066851
Offset: 0
-
CoefficientList[Series[-(2*x*Sqrt[1-8*x^2]-2*x)/(16*x^3+Sqrt[1-8*x^2]*(4*x^2+2*x-1)-8*x^2-2*x+1),{x,0,20}],x] (* Vaclav Kotesovec, May 29 2014 *)
-
a(n):=sum(2^(i)*binomial(n,i),i,0,floor((n)/2));
A385252
Number of ternary strings of length 2*n that have at least one 0 but less 0's than the combined number of 1's and 2's.
Original entry on oeis.org
0, 0, 32, 432, 4608, 45440, 432896, 4051712, 37535744, 345470976, 3165315072, 28905857024, 263303921664, 2393675661312, 21725991600128, 196937443377152, 1783243502256128, 16132632204541952, 145839502212988928, 1317564268289196032, 11896995094093365248, 107375812426273390592
Offset: 0
a(2)=32 since the strings of length 4 are (number of permutations in parentheses): 1110 (4), 1120 (12), 1220 (12), 2220 (4).
a(3)=432 since the strings of length 6 are (number of permutations in parentheses): 111110 (6), 111120 (30), 111220 (60), 112220 (60), 122220 (30), 222220 (6), 001111 (15), 001112 (60), 001122 (90), 001222 (60), 002222 (15).
-
a[0]=0; a[n_]:=9^n - 4^n - Sum[2^(n-k)*Binomial[2n,n-k],{k,0,n}]; Array[a,22,0] (* Stefano Spezia, Jul 31 2025 *)
A386670
Number of ternary strings of length 2*n that have more 0's than the combined number of 1's and 2's.
Original entry on oeis.org
0, 1, 9, 73, 577, 4521, 35313, 275577, 2150721, 16793929, 131230609, 1026283545, 8032614625, 62921342953, 493262044977, 3869724080313, 30379987189377, 238661880787593, 1876072096450257, 14756076838714713, 116126703647975457, 914363729294862633, 7203083947383222897
Offset: 0
a(1)=1 since the string of length 2 is 00.
a(2)=9 since the strings of length 4 are the 4 permutations of 0001, the 4 permutations of 0002, and 0000.
a(4)=577 since the strings of length 8 are (number of permutations in parentheses): 00000001 (8), 00000002 (8), 00000011 (28), 00000012 (56), 00000022 (28), 00000111 (56), 00000112 (168), 00000122 (168), 00000222 (56), 00000000 (1).
A386826
a(n) = Sum_{k=0..n} 3^(n-k)*C(2*n,n-k).
Original entry on oeis.org
1, 7, 67, 694, 7459, 81922, 912718, 10273228, 116522275, 1329569290, 15244087642, 175472098996, 2026521318286, 23470106563924, 272476942589884, 3169997065488664, 36948020548661539, 431354994430077274, 5043279137171450914, 59041965004582271524, 692026745415822877594, 8119918150063503715324
Offset: 0
a(3)=694 counts the strings of length 6 as follows: 540 strings with three 0's, 135 with four 0's, 18 with five 0's, and 1 string with six 0's. Hence 694 = 540 + 135 + 18 + 1, where the summands come from the triangle in A386825.
-
Table[Sum[3^(n-k) Binomial[2n, n-k], {k, 0, n}], {n, 0, 21}]
A387012
Number of ternary strings of length 2*n that have fewer 0's than the combined number of 1's and 2's.
Original entry on oeis.org
0, 4, 48, 496, 4864, 46464, 436992, 4068096, 37601280, 345733120, 3166363648, 28910051328, 263320698880, 2393742770176, 21726260035584, 196938517118976, 1783247797223424, 16132649384411136, 145839570932465664, 1317564543167102976, 11896996193604993024, 107375816824319901696
Offset: 0
a(2) = 48 since the strings of length 4 are the following (number of permutations in parentheses): 1110 (4), 1120 (12), 1220 (12), 2220 (4), 1111 (1), 1112 (4), 1122 (6), 1222 (4), 2222 (1).
-
a[n_] := 9^n - Sum[2^(n-k) * Binomial[2*n, n-k], {k, 0, n}]; Array[a, 22, 0] (* Amiram Eldar, Aug 16 2025 *)
Showing 1-6 of 6 results.
Comments