cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128533 a(n) = F(n)*L(n+2) where F=Fibonacci and L=Lucas numbers.

Original entry on oeis.org

0, 4, 7, 22, 54, 145, 376, 988, 2583, 6766, 17710, 46369, 121392, 317812, 832039, 2178310, 5702886, 14930353, 39088168, 102334156, 267914295, 701408734, 1836311902, 4807526977, 12586269024, 32951280100, 86267571271, 225851433718, 591286729878
Offset: 0

Views

Author

Axel Harvey, Mar 08 2007

Keywords

Comments

Generally, F(n)*L(n+k) = F(2*n + k) + F(k)*(-1)^(n+1): if k = 0 then sequence is A001906, if k = 1 it is A081714.

Examples

			a(4) = 54 because F(4)*L(6) = 3*18.
G.f. = 4*x + 7*x^2 + 22*x^3 + 54*x^4 + 145*x^5 + 376*x^6 + 988*x^7 + ...
		

Crossrefs

Programs

  • GAP
    List([0..30], n -> Fibonacci(2*(n+1)) + (-1)^(n+1)); # G. C. Greubel, Jan 07 2019
  • Magma
    [Fibonacci(n)*Lucas(n+2): n in [0..30]]; // Vincenzo Librandi, Feb 20 2013
    
  • Maple
    with(combinat); A128533:=n->fibonacci(2*n+2)+(-1)^(n+1); seq(A128533(k),k=0..50); # Wesley Ivan Hurt, Oct 19 2013
  • Mathematica
    LinearRecurrence[{2,2,-1}, {0,4,7}, 40] (* Vincenzo Librandi, Feb 20 2013 *)
    a[n_]:= Fibonacci[2n+2] -(-1)^n; (* Michael Somos, May 26 2014 *)
  • PARI
    vector(30, n, n--; fibonacci(2*(n+1)) + (-1)^(n+1)) \\ G. C. Greubel, Jan 07 2019
    
  • Sage
    [fibonacci(2*(n+1)) + (-1)^(n+1) for n in (0..30)] # G. C. Greubel, Jan 07 2019
    

Formula

a(n) = F(2*(n+1)) + (-1)^(n+1), assuming F(0) = 0 and L(0) = 2.
From R. J. Mathar, Apr 16 2009: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: x*(4-x)/((1+x)*(x^2-3*x+1)). (End)
a(n) = A186679(2*n). - Reinhard Zumkeller, Feb 25 2011
a(-n) = - A128535(n). - Michael Somos, May 26 2014
0 = a(n)*(+4*a(n) + a(n+1) - 17*a(n+2)) + a(n+1)*(-14*a(n+1) + a(n+2)) + a(n+2)*(+4*a(n+2)) for all n in Z. - Michael Somos, May 26 2014

Extensions

More terms from Vincenzo Librandi, Feb 20 2013