cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128545 Triangle, read by rows, where T(n,k) is the coefficient of q^(n*k) in the q-binomial coefficient [2*n, n] for n >= k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 8, 5, 1, 1, 7, 18, 18, 7, 1, 1, 11, 39, 58, 39, 11, 1, 1, 15, 75, 155, 155, 75, 15, 1, 1, 22, 141, 383, 526, 383, 141, 22, 1, 1, 30, 251, 867, 1555, 1555, 867, 251, 30, 1, 1, 42, 433, 1860, 4192, 5448, 4192, 1860, 433, 42, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2007

Keywords

Comments

Variant of A047812 (Parker's partition triangle).
Column 1 equals the number of partitions of n: A000041(n) is the coefficient of q^n in the central q-binomial coefficient [2*n, n] for n > 0.

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,  1;
  1,  2,   1;
  1,  3,   3,    1;
  1,  5,   8,    5,    1;
  1,  7,  18,   18,    7,    1;
  1, 11,  39,   58,   39,   11,    1;
  1, 15,  75,  155,  155,   75,   15,    1;
  1, 22, 141,  383,  526,  383,  141,   22,   1;
  1, 30, 251,  867, 1555, 1555,  867,  251,  30,  1;
  1, 42, 433, 1860, 4192, 5448, 4192, 1860, 433, 42, 1;
  ...
		

Crossrefs

Cf. A003239, A047812 (variant), A047996, A123610, A123611 (row sums).
Cf. A000041 (column 1), A128552 (column 2), A128553 (column 3), A128554 (column 4).

Programs

  • PARI
    T(n,k)=if(n
    				

Formula

Row sums equal the row sums of triangle A123610: A123611(n) = 2*A047996(2*n,n) = 2*A003239(n) for n > 0, where A047996 is the triangle of circular binomial coefficients and A003239(n) = number of rooted planar trees with n non-root nodes.

A128552 Column 2 of triangle A128545; a(n) is the coefficient of q^(2n+4) in the central q-binomial coefficient [2n+4,n+2].

Original entry on oeis.org

1, 3, 8, 18, 39, 75, 141, 251, 433, 724, 1185, 1892, 2972, 4588, 6981, 10480, 15553, 22821, 33164, 47746, 68163, 96542, 135747, 189550, 262997, 362691, 497339, 678300, 920417, 1242898, 1670688, 2235880, 2979809, 3955422, 5230471, 6891234
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2007

Keywords

Comments

Column 1 of triangle A128552 equals the partitions of n (A000041).
a(n) is the number of partitions of the integer 2n+4 into at most n+2 summands each of which is at most n+2. - Geoffrey Critzer, Sep 27 2013

Examples

			a(2) = 8 because we have: 4+4 = 4+3+1 = 4+2+2 = 4+2+1+1 = 3+3+2 = 3+3+1+1 = 3+2+2+1 = 2+2+2+2. - _Geoffrey Critzer_, Sep 27 2013
		

Crossrefs

Programs

  • Maple
    with(combinat): p:= numbpart:
    s:= proc(n) s(n):= p(n) +`if`(n>0, s(n-1), 0) end:
    a:= n-> p(2*n+4) -2*s(n+1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 27 2013
  • Mathematica
    Table[nn=2n;Coefficient[Series[Product[(1-x^(n+i))/(1-x^i),{i,1,n}],{x,0,nn}],x^(2n)],{n,1,37}] (* Geoffrey Critzer, Sep 27 2013 *)
  • PARI
    {a(n)=polcoeff(prod(j=n+3,2*n+4,1-q^j)/prod(j=1,n+2,1-q^j),2*n+4,q)}
    
  • PARI
    {a(n)=numbpart(2*n+4)-2*sum(k=0,n+1,numbpart(k))} \\ Paul D. Hanna, Feb 06 2013

Formula

a(n) = A000041(2*n+4) - 2*Sum_{k=0..n+1} A000041(k), where A000041(n) = number of partitions of n, due to a formula given in the Fu and Sellers paper. - Paul D. Hanna, Feb 06 2013

A128554 Column 4 of triangle A128545; a(n) is the coefficient of q^(4n+16) in the central q-binomial coefficient [2n+8,n+4].

Original entry on oeis.org

1, 7, 39, 155, 526, 1555, 4192, 10465, 24620, 55038, 117966, 243723, 487842, 949446, 1802547, 3346632, 6089910, 10881277, 19121293, 33091141, 56466398, 95105255, 158256685, 260386761, 423932473, 683409993, 1091521679, 1728156294
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2007

Keywords

Crossrefs

Programs

  • PARI
    a(n)=polcoeff(prod(j=n+5,2*n+8,1-q^j)/prod(j=1,n+4,1-q^j),4*n+16,q)
Showing 1-3 of 3 results.