A128552
Column 2 of triangle A128545; a(n) is the coefficient of q^(2n+4) in the central q-binomial coefficient [2n+4,n+2].
Original entry on oeis.org
1, 3, 8, 18, 39, 75, 141, 251, 433, 724, 1185, 1892, 2972, 4588, 6981, 10480, 15553, 22821, 33164, 47746, 68163, 96542, 135747, 189550, 262997, 362691, 497339, 678300, 920417, 1242898, 1670688, 2235880, 2979809, 3955422, 5230471, 6891234
Offset: 0
a(2) = 8 because we have: 4+4 = 4+3+1 = 4+2+2 = 4+2+1+1 = 3+3+2 = 3+3+1+1 = 3+2+2+1 = 2+2+2+2. - _Geoffrey Critzer_, Sep 27 2013
-
with(combinat): p:= numbpart:
s:= proc(n) s(n):= p(n) +`if`(n>0, s(n-1), 0) end:
a:= n-> p(2*n+4) -2*s(n+1):
seq(a(n), n=0..40); # Alois P. Heinz, Sep 27 2013
-
Table[nn=2n;Coefficient[Series[Product[(1-x^(n+i))/(1-x^i),{i,1,n}],{x,0,nn}],x^(2n)],{n,1,37}] (* Geoffrey Critzer, Sep 27 2013 *)
-
{a(n)=polcoeff(prod(j=n+3,2*n+4,1-q^j)/prod(j=1,n+2,1-q^j),2*n+4,q)}
-
{a(n)=numbpart(2*n+4)-2*sum(k=0,n+1,numbpart(k))} \\ Paul D. Hanna, Feb 06 2013
A128553
Column 3 of triangle A128545; a(n) is the coefficient of q^(3n+9) in the central q-binomial coefficient [2n+6,n+3].
Original entry on oeis.org
1, 5, 18, 58, 155, 383, 867, 1860, 3782, 7409, 13989, 25683, 45905, 80262, 137453, 231269, 382689, 624061, 1003787, 1594796, 2504587, 3892100, 5988403, 9129707, 13798792, 20688367, 30781988, 45473815, 66723042, 97276842, 140959603
Offset: 0
-
a(n)=polcoeff(prod(j=n+4,2*n+6,1-q^j)/prod(j=1,n+3,1-q^j),3*n+9,q)
A128554
Column 4 of triangle A128545; a(n) is the coefficient of q^(4n+16) in the central q-binomial coefficient [2n+8,n+4].
Original entry on oeis.org
1, 7, 39, 155, 526, 1555, 4192, 10465, 24620, 55038, 117966, 243723, 487842, 949446, 1802547, 3346632, 6089910, 10881277, 19121293, 33091141, 56466398, 95105255, 158256685, 260386761, 423932473, 683409993, 1091521679, 1728156294
Offset: 0
-
a(n)=polcoeff(prod(j=n+5,2*n+8,1-q^j)/prod(j=1,n+4,1-q^j),4*n+16,q)
A123610
Triangle read by rows, where T(n,k) = (1/n)*Sum_{d|(n,k)} phi(d) * binomial(n/d,k/d)^2 for n >= k > 0, with T(n,0) = 1 for n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 10, 4, 1, 1, 5, 20, 20, 5, 1, 1, 6, 39, 68, 39, 6, 1, 1, 7, 63, 175, 175, 63, 7, 1, 1, 8, 100, 392, 618, 392, 100, 8, 1, 1, 9, 144, 786, 1764, 1764, 786, 144, 9, 1, 1, 10, 205, 1440, 4420, 6352, 4420, 1440, 205, 10, 1, 1, 11, 275, 2475, 9900
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 10, 4, 1;
1, 5, 20, 20, 5, 1;
1, 6, 39, 68, 39, 6, 1;
1, 7, 63, 175, 175, 63, 7, 1;
1, 8, 100, 392, 618, 392, 100, 8, 1;
1, 9, 144, 786, 1764, 1764, 786, 144, 9, 1;
1, 10, 205, 1440, 4420, 6352, 4420, 1440, 205, 10, 1;
...
Example of column g.f.s are:
column 1: 1/(1 - x)^2;
column 2: Ser([1, 1, 3, 1]) / ((1 - x)^2*(1 - x^2)^2) = g.f. of A005997;
column 3: Ser([1, 2, 11, 26, 30, 26, 17, 6, 1]) / ((1 - x)^2*(1 - x^2)^2*(1 -x^3)^2);
column 4: Ser([1, 3, 28, 94, 240, 440, 679, 839, 887, 757, 550, 314, 148, 48, 11, 1]) / ((1 - x)^2*(1 - x^2)^2*(1 - x^3)^2*(1 - x^4)^2);
where Ser() denotes a polynomial in x with the given coefficients, as in Ser([1, 1, 3, 1]) = (1 + x + 3*x^2 + x^3).
-
T[, 0] = 1; T[n, k_] := 1/n DivisorSum[n, If[GCD[k, #] == #, EulerPhi[#]* Binomial[n/#, k/#]^2, 0]&]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
-
{T(n,k)=if(k==0,1,(1/n)*sumdiv(n,d,if(gcd(k,d)==d, eulerphi(d)*binomial(n/d,k/d)^2,0)))}
Original entry on oeis.org
1, 2, 4, 8, 20, 52, 160, 492, 1620, 5408, 18504, 64132, 225440, 800048, 2865720, 10341208, 37568340, 137270956, 504176992, 1860277044, 6892335720, 25631327688, 95640894056, 357975249028, 1343650267296, 5056424257552
Offset: 0
-
Total /@ Table[If[k == 0, 1, 1/n DivisorSum[n, If[Divisible[k, #], EulerPhi[#] Binomial[n/#, k/#]^2, 0] &]], {n, 0, 25}, {k, 0, n}] (* Michael De Vlieger, Apr 03 2017, after Jean-François Alcover at A123610 *)
-
{a(n)=sum(k=0,n,if(k==0,1,(1/n)*sumdiv(n,d,if(gcd(k,d)==d, eulerphi(d)*binomial(n/d,k/d)^2,0))))}
A128562
Triangle, read by rows, where T(n,k) is the coefficient of q^((n+1)*k) in the q-binomial coefficient [2*n+1, n] for n >= k >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 12, 6, 1, 1, 10, 29, 29, 10, 1, 1, 14, 61, 94, 61, 14, 1, 1, 21, 120, 263, 263, 120, 21, 1, 1, 29, 222, 645, 910, 645, 222, 29, 1, 1, 41, 392, 1468, 2724, 2724, 1468, 392, 41, 1, 1, 55, 669, 3113, 7352, 9686, 7352, 3113, 669, 55, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 6, 12, 6, 1;
1, 10, 29, 29, 10, 1;
1, 14, 61, 94, 61, 14, 1;
1, 21, 120, 263, 263, 120, 21, 1;
1, 29, 222, 645, 910, 645, 222, 29, 1;
1, 41, 392, 1468, 2724, 2724, 1468, 392, 41, 1;
1, 55, 669, 3113, 7352, 9686, 7352, 3113, 669, 55, 1;
...
Showing 1-6 of 6 results.
Comments