cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129002 a(n) = (n^3 + n^2)*2^n.

Original entry on oeis.org

4, 48, 288, 1280, 4800, 16128, 50176, 147456, 414720, 1126400, 2973696, 7667712, 19382272, 48168960, 117964800, 285212672, 681836544, 1613758464, 3785359360, 8808038400, 20346568704, 46690992128, 106501767168, 241591910400
Offset: 1

Views

Author

Mohammad K. Azarian, May 01 2007

Keywords

Comments

Number of paths along four vertices contained within the n+1 dimensional hypercube graph. - Ben Eck, Mar 30 2022

Crossrefs

Programs

  • Magma
    [(n^3+n^2)*2^n: n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
    
  • Magma
    I:=[4, 48, 288, 1280]; [n le 4 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
    
  • Mathematica
    CoefficientList[Series[4 (1 + 4 x)/(1 - 2 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 12 2013 *)
    LinearRecurrence[{8,-24,32,-16},{4,48,288,1280},30] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    a(n)=(n^3+n^2)<Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 4x*(1+4*x)/(1-2*x)^4. - Vincenzo Librandi, Feb 12 2013
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4). - Vincenzo Librandi, Feb 12 2013
Sum_{n>=1} 1/a(n) = Pi^2/12 - 1 + log(2) - log(2)^2/2. - Amiram Eldar, Aug 05 2020