cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A176796 Numbers k such that A129307(k) + A129307(k+1) is a square.

Original entry on oeis.org

1, 3, 12, 14, 17, 25, 30, 35, 39, 69, 71, 74, 80, 83, 88, 102, 107, 122, 126, 129, 134, 151, 170, 172, 176, 184, 187, 202, 220, 239, 244, 249, 258, 261, 263, 272, 280, 283, 289, 298, 308, 321, 363, 371, 377, 386, 390, 403, 421, 432, 438, 447, 451, 453, 477, 480
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 26 2010

Keywords

Comments

Squares are in A075577.

Crossrefs

Programs

  • Maple
    A027861 := proc(n) option remember; local a; if n= 1 then 1; else for a from procname(n-1)+1 do if isprime(a^2+(a+1)^2) then return a; end if; end do: end if; end proc:
    A129307 := proc(n) A000217(A027861(n)) ; end proc:
    A176796 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if issqr(A129307(a)+A129307(a+1)) then return a; end if; end do: end if; end proc:
    seq(A176796(n),n=1..80) ; # R. J. Mathar, Jun 28 2010

Extensions

Extended beyond a(5) by R. J. Mathar, Jun 28 2010

A002731 Numbers k such that (k^2 + 1)/2 is prime.

Original entry on oeis.org

3, 5, 9, 11, 15, 19, 25, 29, 35, 39, 45, 49, 51, 59, 61, 65, 69, 71, 79, 85, 95, 101, 121, 131, 139, 141, 145, 159, 165, 169, 171, 175, 181, 195, 199, 201, 205, 209, 219, 221, 231, 245, 261, 271, 275, 279, 289, 299, 309, 315, 321, 325, 329, 335, 345, 349, 371, 375, 379, 391, 399, 405
Offset: 1

Views

Author

Keywords

Comments

From Wolfdieter Lang, Feb 24 2012: (Start)
a(n) = sqrt(8*A129307(n)+1) = sqrt(2*A027862(n)-1), n >= 1.
a(n) is the nontrivial solution of the congruence a(n)^2 == 1 (Modd A027862(n)). The trivial one is +1. For Modd n see a comment on A203571. E.g., a(3)^2 = 81 == 1 (Modd 41), see a comment on A027862.
(End)

References

  • L. Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 24.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A027861. A027862 gives primes, A091277 gives prime indices.

Programs

  • Haskell
    a002731 n = a002731_list !! (n-1)
    a002731_list = filter ((== 1) . a010051 . a000982) [1, 3 ..]
    -- Reinhard Zumkeller, Jul 13 2014
  • Magma
    [n: n in [3..410] | IsPrime((n^2+1) div 2) ]; // Vincenzo Librandi, Sep 25 2012
    
  • Mathematica
    Select[Range[400], PrimeQ[(#^2 + 1)/2] &] (* Alonso del Arte, Feb 24 2012 *)
  • PARI
    forstep(n=1,10^3,2, if(isprime((n^2+1)/2),print1(n,", ")));
    /* Joerg Arndt, Sep 02 2012 */
    

Formula

a(n) = 2*A027861(n) + 1.

A207337 Primes of the form (m^2+1)/10.

Original entry on oeis.org

5, 17, 29, 53, 73, 109, 137, 281, 397, 449, 593, 757, 941, 1061, 1277, 1613, 1877, 2161, 2341, 2657, 2789, 3881, 4973, 5153, 6101, 6917, 7129, 7673, 8009, 8237, 8821, 9181, 10433, 12041, 13177, 13469, 13913, 14669, 15761, 17389, 18233, 18749
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

Equivalently, primes of the form (K^2 + (K+1)^2)/5. The connection to the primes of the form (m^2+1)/10 is given by m=2*K+1 (m is necessarily odd). The corresponsding m=m(n) values are given in A002733(n).
Equivalently, primes of the form (4*T(K)+1)/5, with the corresponding triangular numbers T(K):=A000217(K), for K(n)=(m(n)-1)/2, given in A207339(n).
For n>=2 the smallest positive representative of the class of nontrivial solutions of the congruence x^2==1 (Modd a(n)) is x=m(n). The trivial solution is the class with representative x=1, which also includes -1. For the prime a(1)=5 the smallest positive nontrivial solution is 3 (see A027862(1) with A002731(1)). Such a nontrivial smallest positive representative exists for each unique class of solutions of this congruence Modd p for any prime p of the form 4*k+1, given in A002144. Here the subset with k=k(n)=(a(n)-1)/4 appears, namely 1, 4, 7, 13, 18, 27, 34, 70,... For Modd n see a comment on A203571.

Examples

			a(3)=29, m(3)=A002733(3)=17. T(K(3))=A000217((17-1)/2)= A000217(8)=A207339(3)=36. (8^2+9^2)/5 = 29 = (4*36+1)/5.
		

Crossrefs

Programs

  • Haskell
    a207337 n = a207337_list !! (n-1)
    a207337_list = f a002522_list where
       f (x:xs) | m == 0 && a010051 y == 1 = y : f xs
                | otherwise                = f xs
                where (y,m) = divMod x 10
    -- Reinhard Zumkeller, Apr 06 2012

Formula

a(n) is the n-th member of the increasingly ordered list of primes of the form (m^2+1)/10, where m=m(n) is necessarily an odd integer, namely A002733(n).

A207339 Triangular numbers T from A000217 such that (4*T+1)/5 is prime.

Original entry on oeis.org

6, 21, 36, 66, 91, 136, 171, 351, 496, 561, 741, 946, 1176, 1326, 1596, 2016, 2346, 2701, 2926, 3321, 3486, 4851, 6216, 6441, 7626, 8646, 8911, 9591, 10011, 10296, 11026, 11476, 13041, 15051, 16471, 16836, 17391, 18336, 19701, 21736
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

The corresponding primes are gven in A207337, where also equivalent formulations are found.
The indices of these triangular numbers are given by (A002733(n)-1)/2.

Examples

			a(3) = 36 = T((17-1)/2) = T(8)=A000217(8). (4*36+1)/5 = 29 = A207337(3).
		

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Range[300]],PrimeQ[(4#+1)/5]&] (* Harvey P. Dale, Sep 18 2019 *)

Formula

a(n) = T(K(n)):= A000217(K(n)) with K(n)=(m(n)-1)/2, and m(n) given in A002733(n).

A208292 Primes of the form (n^2+1)/26.

Original entry on oeis.org

17, 37, 457, 601, 701, 877, 997, 2017, 3037, 3257, 4957, 5237, 5701, 10601, 11257, 11677, 14737, 15217, 16001, 17317, 17837, 21577, 22157, 24677, 29717, 34057, 39157, 39937, 41201, 50777, 52201, 53101, 75277, 78101, 79201, 89917, 91097, 93001, 94201, 96137
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

Equivalently, primes of the form (K^2 + (K+1)^2)/13. The
connection to the primes of the form (m^2+1)/26 is given by m=2*K+1 (m is necessarily odd).
The corresponding m=m(n) values are given in A208293(n).
Equivalently, primes of the form (4*T(K)+1)/13, with the
corresponding triangular numbers T(K):=A000217(K), for
K=K(n)=(m(n)-1)/2, given in A208294(n).
For n>=2 the smallest positive representative of the class of
nontrivial solutions of the congruence x^2==1 (Modd a(n)) is
x=m(n). The trivial solution is the class with representative x=1, which also includes -1. For the prime
a(1)=17 the nontrivial solution is 13 (see A002733(2)). Unique nontrivial smallest positive representatives exist for the solutions for any prime of the form 4*k+1, given in A002144. Here the subset with k=k(n)=(a(n)-1)/4 appears, namely 4,9,114,150,175,219,.... For Modd n see a comment on A203571.
These primes with corresponding m values are such that floor(m(n)^2/p(n)) = 5^2, n>=1.

Examples

			a(3)=457, m(3)=A208293(3)=109. T(K(3))=A000217((109-1)/2)=
  A000217(54)=A208294(3)=1485.
		

Crossrefs

Cf. A207337, A207339 (case floor(m^2/p)=3^2); A129307, A027862, A002731 (case floor(m^2/p)=1^2).

Programs

  • Mathematica
    Select[(Range[2000]^2 + 1)/26, PrimeQ] (* T. D. Noe, Feb 28 2012 *)

Formula

a(n) is the n-th member of the increasingly ordered list of primes of the form (m^2+1)/10, where m=m(n) is necessarily an odd integer, the positive one is A208293(n).

A208293 Numbers n such that (n^2+1)/26 is prime.

Original entry on oeis.org

21, 31, 109, 125, 135, 151, 161, 229, 281, 291, 359, 369, 385, 525, 541, 551, 619, 629, 645, 671, 681, 749, 759, 801, 879, 941, 1009, 1019, 1035, 1149, 1165, 1175, 1399, 1425, 1435, 1529, 1539, 1555, 1565, 1581, 1669, 1685, 1695, 1799, 1851, 1919, 1945, 1971
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

The corresponding primes (n^2+1)/26 are given in A208292(n).
a(n) is the smallest positive representative of the class of
nontrivial solutions of the congruence x^2==1 (Modd A208292(n)), if n>=2. The trivial solution is the class with representative x=1, which also includes -1. For Modd n see a comment on A203571. For n=1: a(1) = 21 == 13 (Modd 17), and 13 is the smallest positive solution >1.
The unique class of nontrivial solutions of the congruence x^2==1 (Modd p), with p an odd prime, exists for any p of the form 4*k+1, given in A002144. Here a subset of these primes is covered, the ones for k=k(n)=(a(n)^2-25)/(4*26). These values are 4, 9, 114, 150, 175, 219, ...

Examples

			a(3)=109 because (109^2+1)/26 = 457 is prime.
  109 = sqrt(26*457-1) = sqrt(8*1485+1).
		

Crossrefs

Programs

Formula

a(n) = sqrt(26*A208292(n)-1) = sqrt(8*A208294(n)+1), n>=1.

A208294 Triangular numbers T from A000217 such that (4*T+1)/13 is prime.

Original entry on oeis.org

55, 120, 1485, 1953, 2278, 2850, 3240, 6555, 9870, 10585, 16110, 17020, 18528, 34453, 36585, 37950, 47895, 49455, 52003, 56280, 57970, 70125, 72010, 80200, 96580, 110685, 127260, 129795, 133903, 165025, 169653, 172578, 244650
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2012

Keywords

Comments

The corresponding primes are gven in A208292, where equivalent formulations are found.
The indices of these triangular numbers are given by (A208293(n)-1)/2.

Examples

			a(2) = 120. m(2)= 31: 120 = T((31-1)/2) = T(15)=A000217(15). (4*120+1)/13 = 37 = A208292(2).
		

Crossrefs

Programs

  • Mathematica
    tri = # (# + 1)/2 & /@ Range@ 1000; Select[ tri, PrimeQ[(4 # + 1)/13] &] (* Robert G. Wilson v, Feb 28 2012 *)

Formula

a(n) = T(K(n)):= A000217(K(n)) with K(n)=(A208293(n)-1)/2.
Showing 1-7 of 7 results.