A003459 Absolute primes (or permutable primes): every permutation of the digits is a prime.
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111, 11111111111111111111111
Offset: 1
References
- Richard C. Schroeppel, personal communication.
- Wacław Sierpiński, Co wiemy, a czego nie wiemy o liczbach pierwszych. Warsaw: PZWS, 1961, pp. 20-21.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 113.
Links
- I. O. Angell and H. J. Godwin, On Truncatable Primes, Math. Comput. 31, 265-267, 1977. [Related paper, but primarily concerned with A023107 and A103443. - _N. J. A. Sloane_, Jun 06 2015]
- T. N. Bhargava and P. H. Doyle, On the existence of absolute primes, Math. Mag., 47 (1974), 233.
- J. L. Boal and J. H. Bevis, Permutable primes. Math. Mag., 55 (No. 1, 1982), 38-41.
- C. Caldwell, The prime glossary: Permutable Prime.
- J. P. Delahaye, Persistent Primes, Illustrating Permutable, Circular, Right & Left Truncatable Primes, Pour La Science no 256.
- James Grime and Brady Haran, Absolute Primes, YouTube Numberphile video, 2024.
- A. W. Johnson, Absolute primes, Mathematics Magazine, 1977, vol. 50, pp. 100-103.
- R. Ondrejka, The Top Ten: a Catalogue of Primal Configurations.
- W. Schneider, MATHEWS, Circular, Permutable, Truncatable and Deletable Primes.
- A. Slinko, Absolute Primes Oct. 2000.
- A. Slinko, Absolute Primes, Oct. 2000 [Cached copy, permission requested].
- Wikipedia, Permutable prime.
- Index entries for sequences related to truncatable primes.
Crossrefs
Programs
-
Haskell
import Data.List (permutations) a003459 n = a003459_list !! (n-1) a003459_list = filter isAbsPrime a000040_list where isAbsPrime = all (== 1) . map (a010051 . read) . permutations . show -- Reinhard Zumkeller, Sep 15 2011
-
Mathematica
f[n_]:=Module[{b=Permutations[IntegerDigits[n]],q=1},Do[If[!PrimeQ[c=FromDigits[b[[m]]]],q=0;Break[]],{m,Length[b]}];q];Select[Range[1000],f[#]>0&] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2011 *) (* Linear complexity: can't reach R(19). See A258706. - Bill Gosper, Jan 06 2017 *)
-
PARI
for(n=1, oo, my(S=[],r=10^n\9); for(a=1, 9^(n>1), for(b=if(n>2, 1-a), 9-a, for(j=0, if(b, n-1), ispseudoprime(a*r+b*10^j)||next(2)); S=concat(S,vector(if(b,n,1),k,a*r+10^(k-1)*b))));apply(t->printf(t","),Set(S))) \\ M. F. Hasler, Jun 26 2018
Formula
Conjecture: for n >= 23, a(n) = A004022(n-21). - Max Alekseyev, Oct 08 2018
Comments