cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129363 Number of partitions of 2n into the sum of two twin primes.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 2, 1, 2, 2, 3, 3, 2, 1, 2, 2, 3, 4, 2, 1, 2, 1, 2, 3, 3, 2, 2, 1, 2, 4, 3, 3, 4, 2, 2, 3, 2, 2, 4, 2, 0, 0, 0, 2, 4, 3, 2, 2, 2, 4, 6, 3, 3, 5, 3, 1, 2, 1, 2, 4, 2, 1, 2, 2, 4, 5, 3, 2, 4, 3, 3, 4, 2, 2, 4, 2, 3, 6, 3, 1, 2, 1, 3, 6, 4, 2, 2, 1, 2, 4, 3, 4, 6, 4, 4, 5, 3, 6, 12
Offset: 1

Views

Author

T. D. Noe, Apr 11 2007

Keywords

Comments

a(n/2)=0 for the n in A007534. The logarithmic plot of this sequence seems very regular after 200000 terms.

Examples

			a(11)=3 because 22 = 3+19 = 5+17 = 11+11.
		

Crossrefs

Cf. A175931 (n for which a(n-1), a(n), a(n+1) are equal).

Programs

  • Haskell
    a129363 n = sum $ map (a164292 . (2*n -)) $ takeWhile (<= n) a001097_list
    -- Reinhard Zumkeller, Feb 03 2014
  • Mathematica
    nn=1000; tw=Select[Prime[Range[PrimePi[nn]]], PrimeQ[ #+2]&]; tw=Union[tw,tw+2]; tc=Table[0,{nn}]; tc[[tw]]=1; Table[cnt=0; k=1; While[tw[[k]]<=n/2, cnt=cnt+tc[[n-tw[[k]]]]; k++ ]; cnt, {n,2,nn,2}]

Formula

a(n) = Sum_{i=1..n} ceiling((A010051(i+2) + A010051(i-2))/2) * ceiling((A010051(2n-i+2) + A010051(2n-i-2))/2) * A010051(2n-i) * A010051(i). - Wesley Ivan Hurt, Jan 30 2014
a(n) = sum(A164292(2*n - A001097(k)): A001097(k) <= n). - Reinhard Zumkeller, Feb 03 2014

Extensions

Comment converted to crossref by Klaus Brockhaus, Oct 27 2010