A129363 Number of partitions of 2n into the sum of two twin primes.
0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 2, 1, 2, 2, 3, 3, 2, 1, 2, 2, 3, 4, 2, 1, 2, 1, 2, 3, 3, 2, 2, 1, 2, 4, 3, 3, 4, 2, 2, 3, 2, 2, 4, 2, 0, 0, 0, 2, 4, 3, 2, 2, 2, 4, 6, 3, 3, 5, 3, 1, 2, 1, 2, 4, 2, 1, 2, 2, 4, 5, 3, 2, 4, 3, 3, 4, 2, 2, 4, 2, 3, 6, 3, 1, 2, 1, 3, 6, 4, 2, 2, 1, 2, 4, 3, 4, 6, 4, 4, 5, 3, 6, 12
Offset: 1
Keywords
Examples
a(11)=3 because 22 = 3+19 = 5+17 = 11+11.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- James Grime and Brady Haran, Goldbach Conjecture (but with TWIN PRIMES), Numberphile video (2024)
- T. D. Noe, Logarithmic plot of 10^6 terms
Programs
-
Haskell
a129363 n = sum $ map (a164292 . (2*n -)) $ takeWhile (<= n) a001097_list -- Reinhard Zumkeller, Feb 03 2014
-
Mathematica
nn=1000; tw=Select[Prime[Range[PrimePi[nn]]], PrimeQ[ #+2]&]; tw=Union[tw,tw+2]; tc=Table[0,{nn}]; tc[[tw]]=1; Table[cnt=0; k=1; While[tw[[k]]<=n/2, cnt=cnt+tc[[n-tw[[k]]]]; k++ ]; cnt, {n,2,nn,2}]
Formula
Extensions
Comment converted to crossref by Klaus Brockhaus, Oct 27 2010
Comments