cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129707 Number of inversions in all Fibonacci binary words of length n.

Original entry on oeis.org

0, 0, 1, 4, 12, 31, 73, 162, 344, 707, 1416, 2778, 5358, 10188, 19139, 35582, 65556, 119825, 217487, 392286, 703618, 1255669, 2230608, 3946020, 6954060, 12212280, 21377365, 37309288, 64935132, 112726771, 195224773, 337343034, 581700476
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

A Fibonacci binary word is a binary word having no 00 subword.

Examples

			a(3)=4 because the Fibonacci words 110,111,101,010,011 have a total of 2 + 0 + 1 + 1 + 0 = 4 inversions.
		

Crossrefs

Cf. A129706.
Cf. A055243.

Programs

  • Maple
    with(combinat): a[0]:=0: a[1]:=0: a[2]:=1: a[3]:=4: for n from 4 to 40 do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]-a[n-4]+fibonacci(n) od: seq(a[n],n=0..40);
  • Mathematica
    CoefficientList[Series[x^2*(1 + x)/(1 - x - x^2)^3, {x,0,50}], x] (* G. C. Greubel, Mar 04 2017 *)
  • Maxima
    a(n) = sum(k*(k+1)*binomial(k,n-k-1),k,floor((n-1)/2),n-1)/2; /* Vladimir Kruchinin, Sep 17 2020 */
  • PARI
    x='x+O('x^50); concat([0,0], Vec(x^2*(1 + x)/(1 - x - x^2)^3)) \\ G. C. Greubel, Mar 04 2017
    

Formula

a(n) = Sum_{k>=0} k*A129706(n,k).
G.f.: z^2*(1+z)/(1-z-z^2)^3.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) + F(n), a(0)=a(1)=0, a(2)=1, a(3)=4.
a(n-3) = ((5*n^2 - 37*n + 50)*F(n-1) + 4*(n-1)*F(n))/50 = (-1)^n*A055243(-n). - Peter Bala, Oct 25 2007
a(n) = A001628(n-3) + A001628(n-2). - R. J. Mathar, Dec 07 2011
a(n+1) = A123585(n+2,n). - Philippe Deléham, Dec 18 2011
a(n) = Sum_{k=floor((n-1)/2)..n-1} k*(k+1)/2*C(k,n-k-1). - Vladimir Kruchinin, Sep 17 2020