cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A055243 First differences of A001628 (Fibonacci convolution).

Original entry on oeis.org

1, 2, 6, 13, 29, 60, 122, 241, 468, 894, 1686, 3144, 5807, 10636, 19338, 34931, 62731, 112068, 199264, 352787, 622152, 1093260, 1914780, 3343440, 5821645, 10110278, 17515566, 30276073, 52221929, 89896332, 154461110, 264930661, 453654108, 775598634, 1324053522
Offset: 0

Views

Author

Wolfdieter Lang, May 10 2000

Keywords

Comments

2*a(n) = C_{n+3} of Turban reference eq.(2.17), C_{1}= 0 = C_{2}.
Number of binary sequences of length n+3 such that the sequence has exactly two pairs (which may overlap) of consecutive 1's. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Sep 07 2004

Crossrefs

Programs

  • Maple
    a:= n -> (Matrix([[1,0$4,-1]]). Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [3,0,-5,0,3,1][i] else 0 fi)^(n))[1,1]: seq(a(n), n=0..30); # Alois P. Heinz, Aug 05 2008
  • Mathematica
    Differences[LinearRecurrence[{3,0,-5,0,3,1},{0,1,3,9,22,51,111},40]] (* Harvey P. Dale, Jun 12 2019 *)

Formula

G.f.: (1-x)/(1-x-x^2)^3. (from Turban reference eq.(2.15)).
a(n)= ((5*n^2+37*n+50)*F(n+1)+4*(n+1)*F(n))/50 with F(n)=A000045(n) (Fibonacci numbers) (from Turban reference eq. (2.17)).
From Peter Bala, Oct 25 2007 (Start):
Since F(-n) = (-1)^(n+1)*F(n), we can use the previous formula to extend the sequence to negative values of n; we find a(-n) = (-1)^n* A129707(n-3).
Recurrence relations: a(n+4) = 2*a(n+3) + a(n+2) - 2*a(n+1) - a(n) + F(n+3), with a(0) = 1, a(1) = 2, a(2) = 6 and a(3) = 13;
a(n+2) = a(n+1) + a(n) + A010049(n+3), with a(0) = 1 and a(1) = 2.
a(n-3) = Sum_{k = 2..floor((n+1)/2)} C(k,2)*C(n-k,k-1) = (1/2)*G''(n,1), where the polynomial G(n,x) := Sum_{k = 1..floor((n+1)/2)} C(n-k,k-1)*x^k = x^((n+1)/2) * F(n, 1/sqrt(x)) and where F(n,x) denotes the n-th Fibonacci polynomial. Since G(n,1) yields the Fibonacci numbers A000045 and G'(n,1) yields the second-order Fibonacci numbers A010049, a(n) may be considered as the sequence of third-order Fibonacci numbers.
For n >= 4, the polynomials Sum_{k = 0..n} C(n,k) * G''(n-k,1)*(-x)^k appear to satisfy a Riemann hypothesis; their zeros appear to lie on the vertical line Re x = 1/2 in the complex plane. Compare with the remarks in A094440 and A010049. (End)
a(n) = A076791(n+3, 2). - Michael Somos, Sep 24 2024
E.g.f.: exp(x/2)*(5*(25 + 23*x + 5*x^2)*cosh(sqrt(5)*x/2) + sqrt(5)*(29 + 65*x + 10*x^2)*sinh(sqrt(5)*x/2))/125. - Stefano Spezia, Sep 26 2024

A123585 Triangle T(n,k), 0<=k<=n, given by [1, -1, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 0, 2, 2, -1, 1, 5, 3, -1, -2, 4, 10, 5, 0, -4, -4, 12, 20, 8, 1, -2, -13, -4, 31, 38, 13, 1, 3, -11, -33, 3, 73, 71, 21, 0, 6, 6, -42, -74, 34, 162, 130, 34, -1, 3, 24, 0, -130, -146, 128, 344, 235, 55, -1, -4, 21, 72, -50, -352
Offset: 0

Views

Author

Philippe Deléham, Nov 13 2006

Keywords

Examples

			Triangle begins:
1;
1, 1;
0, 2, 2;
-1, 1, 5, 3;
-1, -2, 4, 10, 5;
0, -4, -4, 12, 20, 8;
1, -2, -13, -4, 31, 38, 13;
1, 3, -11, -33, 3, 73, 71, 21;
0, 6, 6, -42, -74, 34, 162, 130, 34;
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[1/(1 - (1 + y)*x + (1 - y^2)*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 16 2017 *)

Formula

Sum_{k,0<=k<=n} T(n,k) = 2^n = A000079(n).
T(n,0) = A010892(n).
T(n,n) = Fibonacci(n+1) = A000045(n+1).
T(n+1,1) = A099254(n).
T(n+1,n) = A001629(n+2).
Sum_{k, 0<=k<=[n/2]} T(n-k,k) = A003269(n).
T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-2) - T(n-2,k), n>0.
Sum_{k, 0<=k<=n} x^k*T(n,k) = (-1)^n*A003683(n+1), (-1)^n*A006130(n), A000007(n), A010892(n), A000079(n), A030195(n+1) for x=-3, -2, -1, 0, 1, 2 respectively . - Philippe Deléham, Dec 01 2006
T(n+2,n) = A129707(n+1).- Philippe Deléham, Dec 18 2011
G.f.: 1/(1-(1+y)*x+(1-y^2)*x^2). - Philippe Deléham, Dec 18 2011

A129706 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k inversions (n>=0, 0<=k<=floor(n(n+1)/6)). A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 4, 4, 4, 2, 1, 2, 2, 2, 4, 4, 6, 6, 4, 2, 2, 2, 2, 2, 4, 4, 6, 8, 8, 6, 6, 4, 2, 1, 2, 2, 2, 4, 4, 6, 8, 10, 10, 10, 10, 8, 6, 4, 2, 1, 2, 2, 2, 4, 4, 6, 8, 10, 12, 14, 14, 14, 14, 12, 10, 8, 4, 2, 2, 2, 2, 2, 4, 4, 6, 8, 10, 12, 16, 18, 18, 20
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

Row n has 1+floor(n(n+1)/6) terms. Row sums are the Fibonacci numbers (A000045). Sum(k*T(n,k), k>=0)=A129707(n).

Examples

			T(5,3)=4 because we have 11101, 10101, 01110 and 01010.
Triangle starts:
1;
2;
2,1;
2,2,1;
2,2,2,2;
2,2,2,4,2,1;
2,2,2,4,4,4,2,1;
		

Crossrefs

Programs

  • Maple
    Q[0]:=1: Q[1]:=1+x: for n from 2 to 12 do Q[n]:=expand(x*Q[n-1]+t*x*subs(x=t*x,Q[n-2])) od: for n from 0 to 15 do P[n]:=sort(subs(x=1,Q[n])) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..floor(n*(n+1)/6)) od; # yields sequence in triangular form

Formula

G.f.=G(t,z)=H(t,1,z), where H(t,x,z)=1+z+xzH(t,x,z)+txz^2*H(t,tx,z). Row generating polynomials P[n] are given by P[n](t)=Q[n](t,1), where Q[0]=1, Q[1]=1+x, Q[n](t,x)=xQ[n-1](t,x)+txQ[n-2](t,tx) for n>=2.

A201947 Triangle T(n,k), read by rows, given by (1,1,-1,0,0,0,0,0,0,0,...) DELTA (1,-1,1,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 2, 0, 3, 5, 1, -1, 5, 10, 4, -2, -1, 8, 20, 12, -4, -4, 0, 13, 38, 31, -4, -13, -2, 1, 21, 71, 73, 3, -33, -11, 3, 1, 34, 130, 162, 34, -74, -42, 6, 6, 0, 55, 235, 344, 128, -146, -130, 0, 24, 3, -1
Offset: 0

Views

Author

Philippe Deléham, Dec 06 2011

Keywords

Comments

Row-reversed variant of A123585. Row sums: 2^n.

Examples

			Triangle begins:
1
1, 1
2, 2, 0
3, 5, 1, -1
5, 10, 4, -2, -1
8, 20, 12, -4, -4, 0
13, 38, 31, -4, -13, -2, 1
21, 71, 73, 3, -33, -11, 3, 1
34, 130, 162, 34, -74, -42, 6, 6, 0
55, 235, 344, 128, -146, -130, 0, 24, 3, -1
		

Crossrefs

Cf. Columns: A000045, A001629, A129707.
Diagonals: A010892, A099254, Antidiagonal sums: A158943.

Formula

G.f.: 1/(1-(1+y)*x+(y+1)*(y-1)*x^2).
T(n,0) = A000045(n+1).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-2,k-2) with T(0,0)= 1 and T(n,k)= 0 if n
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A090591(n), (-1)^n*A106852(n), A000007(n), A000045(n+1), A000079(n), A057083(n), A190966(n+1) for n = -3, -2, -1, 0, 1, 2, 3 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A010892(n), A000079(n), A030195(n+1), A180222(n+2) for x = 0, 1, 2, 3 respectively.

A209599 Triangle T(n,k), read by rows, given by (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 5, 3, 0, 0, 8, 7, 1, 0, 0, 13, 15, 4, 0, 0, 0, 21, 30, 12, 1, 0, 0, 0, 34, 58, 31, 5, 0, 0, 0, 0, 55, 109, 73, 18, 1, 0, 0, 0, 0, 89, 201, 162, 54, 6, 0, 0, 0, 0, 0, 144, 365, 344, 145, 25, 1, 0, 0, 0, 0, 0
Offset: 0

Author

Philippe Deléham, Mar 10 2012

Keywords

Comments

A skew version of A122075.

Examples

			Triangle begins :
  1
  2, 0
  3, 1, 0
  5, 3, 0, 0
  8, 7, 1, 0, 0
  13, 15, 4, 0, 0, 0
  21, 30, 12, 1, 0, 0, 0
  34, 58, 31, 5, 0, 0, 0, 0
  55, 109, 73, 18, 1, 0, 0, 0, 0
  89, 201, 162, 54, 6, 0, 0, 0, 0, 0
  144, 365, 344, 145, 25, 1, 0, 0, 0, 0, 0
  ...
		

Crossrefs

Programs

  • Mathematica
    T[0, 0] := 1; T[1, 0] := 2; T[1, 1] := 0; T[n_, k_] := T[n, k] = If[n<0, 0, If[k > n, 0, T[n - 1, k] + T[n - 2, k] + T[n - 2, k - 1]]]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 19 2017 *)

Formula

G.f.: (1+x)/(1-x-(1+y)*x^2).
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A040000(n), A000045(n+2), A000079(n), A006138(n), A026597(n), A133407(n), A133467(n), A133469(n), A133479(n), A133558(n), A133577(n), A063092(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.

A236076 A skewed version of triangular array A122075.

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 0, 3, 5, 0, 0, 1, 7, 8, 0, 0, 0, 4, 15, 13, 0, 0, 0, 1, 12, 30, 21, 0, 0, 0, 0, 5, 31, 58, 34, 0, 0, 0, 0, 1, 18, 73, 109, 55, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144, 0, 0, 0, 0, 0, 0, 7, 85, 361
Offset: 0

Author

Philippe Deléham, Jan 19 2014

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Subtriangle of the triangle A122950.

Examples

			Triangle begins:
  1;
  0,  2;
  0,  1,  3;
  0,  0,  3,  5;
  0,  0,  1,  7,  8;
  0,  0,  0,  4, 15, 13;
  0,  0,  0,  1, 12, 30, 21;
  0,  0,  0,  0,  5, 31, 58, 34;
		

Crossrefs

Cf. variant: A055830, A122075, A122950, A208337.
Cf. A167704 (diagonal sums), A000079 (row sums).
Cf. A111006.

Programs

  • Haskell
    a236076 n k = a236076_tabl !! n !! k
    a236076_row n = a236076_tabl !! n
    a236076_tabl = [1] : [0, 2] : f [1] [0, 2] where
       f us vs = ws : f vs ws where
         ws = [0] ++ zipWith (+) (zipWith (+) ([0] ++ us) (us ++ [0])) vs
    -- Reinhard Zumkeller, Jan 19 2014
    
  • Mathematica
    T[n_, k_]:= If[k<0 || k>n, 0, If[n==0 && k==0, 1, If[k==0, 0, If[n==1 && k==1, 2, T[n-1, k-1] + T[n-2, k-1] + T[n-2, k-2]]]]]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 21 2019 *)
  • PARI
    {T(n,k) = if(k<0 || k>n, 0, if(n==0 && k==0, 1, if(k==0, 0, if(n==1 && k==1, 2, T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) ))))}; \\ G. C. Greubel, May 21 2019
    
  • Sage
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return 1
        elif (k==0): return 0
        elif (n==1 and k==1): return 2
        else: return T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 21 2019

Formula

G.f.: (1+x*y)/(1 - x*y - x^2*y - x^2*y^2).
T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2), T(0,0)=1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k < 0 or if k > n.
Sum_{k=0..n} T(n,k) = 2^n = A000079(n).
Sum_{n>=k} T(n,k) = A078057(k) = A001333(k+1).
T(n,n) = Fibonacci(n+2) = A000045(n+2).
T(n+1,n) = A023610(n-1), n >= 1.
T(n+2,n) = A129707(n).

A112973 Riordan array (1/(1-x-x^2), x(1+x)/(1-x-x^2)^2).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 3, 12, 7, 1, 5, 31, 31, 10, 1, 8, 73, 110, 59, 13, 1, 13, 162, 340, 267, 96, 16, 1, 21, 344, 956, 1022, 529, 142, 19, 1, 34, 707, 2507, 3479, 2416, 923, 197, 22, 1, 55, 1416, 6231, 10850, 9657, 4900, 1476, 261, 25, 1, 89, 2778, 14840, 31606, 34905
Offset: 0

Author

Paul Barry, Oct 07 2005

Keywords

Comments

Row sums are A091702. Diagonal sums are A052960. First column is A000045(n+1).
Second column is A129707. - Ralf Stephan, Dec 31 2013

Examples

			Rows begin
1;
1,1;
2,4,1;
3,12,7,1;
5,31,31,10,1;
8,73,110,59,13,1;
		

Programs

  • Maxima
    T(n,k):=sum(binomial(m,n-m)*binomial(m+k,2*k),m,floor(n/2),n); /* Vladimir Kruchinin, Apr 21 2015 */

Formula

T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) - 2*T(n-3,k) - T(n-4,k), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 2, T(2,1) = 4, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 21 2014
G.f.: (x^2+x-1)/((x^2+x)*y-x^4-2*x^3+x^2+2*x-1). - Vladimir Kruchinin, Apr 21 2015
T(n,k) = Sum_{m=floor(n/2)..n} C(m,n-m)*C(m+k,2*k). - Vladimir Kruchinin, Apr 21 2015

Extensions

Definition corrected by Ralf Stephan, Dec 31 2013
Showing 1-7 of 7 results.