cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001628 Convolved Fibonacci numbers.

Original entry on oeis.org

1, 3, 9, 22, 51, 111, 233, 474, 942, 1836, 3522, 6666, 12473, 23109, 42447, 77378, 140109, 252177, 451441, 804228, 1426380, 2519640, 4434420, 7777860, 13599505, 23709783, 41225349, 71501422, 123723351, 213619683, 368080793, 633011454, 1086665562, 1862264196
Offset: 0

Views

Author

Keywords

Comments

a(n-2) = (((-i)^(n-2))/2)*(d^2/dx^2)S(n,x)|A049310%20for%20the%20S-polynomials.%20-%20_Wolfdieter%20Lang">{x=i}, n>=2. Second derivative of Chebyshev S-polynomials evaluated at x=i (imaginary unit) multiplied by ((-i)^(n-2))/2. See A049310 for the S-polynomials. - _Wolfdieter Lang, Apr 04 2007
a(n) = number of weak compositions of n in which exactly 2 parts are 0 and all other parts are either 1 or 2. - Milan Janjic, Jun 28 2010
Number of 4-cycles in the Fibonacci cube Gamma[n+3] (see the Klavzar reference, p. 511). - Emeric Deutsch, Apr 17 2014

Examples

			G.f. = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 111*x^5 + 233*x^6 + 474*x^7 + ...
		

References

  • T. Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001, p. 375.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A037027(n+2,2) (Fibonacci convolution triangle).
Cf. A055243 (first differences).
Cf. A291915 (6-cycles).

Programs

  • Magma
    [(&+[Binomial(k,n-k)*Binomial(k+2,2): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 10 2018
  • Maple
    A001628:=-1/(z**2+z-1)**3; [Simon Plouffe in his 1992 dissertation.]
    a:= n-> (Matrix(6, (i, j)-> `if` (i=j-1, 1, `if` (j=1, [3, 0, -5, 0, 3, 1][i], 0)))^n)[1,1]: seq (a(n), n=0..29); # Alois P. Heinz, Aug 01 2008
  • Mathematica
    CoefficientList[Series[1/(-z^2 - z + 1)^3, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
    (* Start Eric W. Weisstein, Sep 05 2017 *)
    Table[Derivative[2][Fibonacci[n + 2, #] &][1]/2, {n, 20}]
    Derivative[2][Fibonacci[Range[20] + 2, #] &][1]/2
    LinearRecurrence[{3, 0, -5, 0, 3, 1}, {1, 3, 9, 22, 51, 111}, 20]
    Table[-I^(n + 1) Derivative[2][ChebyshevU[n + 1, -#/2] &][I]/2, {n, 20}]
    (* End *)
  • PARI
    Vec((1 - x - x^2 )^-3+O(x^99)) \\ Charles R Greathouse IV, Jul 01 2011
    

Formula

G.f.: 1 / (1 - x - x^2)^3.
a(n) = A037027(n+2,2) (Fibonacci convolution triangle).
a(n) = ((5*n+16)*(n+1)*F(n+2)+(5*n+17)*(n+2)*F(n+1))/50, F=A000045. - Wolfdieter Lang, Apr 12 2000 (This formula coincides with eq. (32.14) of the Koshy reference, p. 375, if there n -> n+3. - Wolfdieter Lang, Aug 03 2012)
For n>2, a(n-2) = sum(i+j+k=n, F(i)*F(j)*F(k)). - Benoit Cloitre, Nov 01 2002
a(n) = F''(n+2, 1)/2, i.e. 1/2 times the 2nd derivative of the (n+2)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006
a(n) = Sum_{k=0..n} C(k,n-k)*C(k+2,2). - Paul Barry, Apr 13 2008
0 = n*a(n) - (n+2)*a(n-1) - (n+4)*a(n-2), n>1. - Michael D. Weiner, Nov 18 2014
a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6). - Eric W. Weisstein, Sep 05 2017

A168561 Riordan array (1/(1-x^2), x/(1-x^2)). Unsigned version of A049310.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 1, 0, 6, 0, 5, 0, 1, 0, 4, 0, 10, 0, 6, 0, 1, 1, 0, 10, 0, 15, 0, 7, 0, 1, 0, 5, 0, 20, 0, 21, 0, 8, 0, 1, 1, 0, 15, 0, 35, 0, 28, 0, 9, 0, 1, 0, 6, 0, 35, 0, 56, 0, 36, 0, 10, 0, 1, 1, 0, 21, 0, 70, 0, 84, 0, 45, 0, 11, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 29 2009

Keywords

Comments

Row sums: A000045(n+1), Fibonacci numbers.
A168561*A007318 = A037027, as lower triangular matrices. Diagonal sums : A077957. - Philippe Deléham, Dec 02 2009
T(n,k) is the number of compositions of n+1 into k+1 odd parts. Example: T(4,2)=3 because we have 5 = 1+1+3 = 1+3+1 = 3+1+1.
Coefficients of monic Fibonacci polynomials (rising powers of x). Ftilde(n, x) = x*Ftilde(n-1, x) + Ftilde(n-2, x), n >=0, Ftilde(-1,x) = 0, Ftilde(0, x) = 1. G.f.: 1/(1 - x*z - z^2). Compare with Chebyshev S-polynomials (A049310). - Wolfdieter Lang, Jul 29 2014

Examples

			The triangle T(n,k) begins:
n\k 0  1   2   3   4    5    6    7    8    9  10  11  12  13 14 15 ...
0:  1
1:  0  1
2:  1  0   1
3:  0  2   0   1
4:  1  0   3   0   1
5:  0  3   0   4   0    1
6:  1  0   6   0   5    0    1
7:  0  4   0  10   0    6    0    1
8:  1  0  10   0  15    0    7    0    1
9:  0  5   0  20   0   21    0    8    0    1
10: 1  0  15   0  35    0   28    0    9    0   1
11: 0  6   0  35   0   56    0   36    0   10   0   1
12: 1  0  21   0  70    0   84    0   45    0  11   0   1
13: 0  7   0  56   0  126    0  120    0   55   0  12   0   1
14: 1  0  28   0 126    0  210    0  165    0  66   0  13   0  1
15: 0  8   0  84   0  252    0  330    0  220   0  78   0  14  0  1
... reformatted by _Wolfdieter Lang_, Jul 29 2014.
------------------------------------------------------------------------
		

Crossrefs

Cf. A162515 (rows reversed), A112552, A102426 (deflated).

Programs

  • Maple
    A168561:=proc(n,k) if n-k mod 2 = 0 then binomial((n+k)/2,k) else 0 fi end proc:
    seq(seq(A168561(n,k),k=0..n),n=0..12) ; # yields sequence in triangular form
  • Mathematica
    Table[If[EvenQ[n + k], Binomial[(n + k)/2, k], 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 16 2017 *)
  • PARI
    T(n,k) = if ((n+k) % 2, 0, binomial((n+k)/2,k));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print();); \\ Michel Marcus, Oct 09 2016

Formula

Sum_{k=0..n} T(n,k)*x^k = A059841(n), A000045(n+1), A000129(n+1), A006190(n+1), A001076(n+1), A052918(n), A005668(n+1), A054413(n), A041025(n), A099371(n+1), A041041(n), A049666(n+1), A041061(n), A140455(n+1), A041085(n), A154597(n+1), A041113(n) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 respectively. - Philippe Deléham, Dec 02 2009
T(2n,2k) = A085478(n,k). T(2n+1,2k+1) = A078812(n,k). Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000045(n+1), A006131(n), A015445(n), A168579(n), A122999(n) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Dec 02 2009
T(n,k) = binomial((n+k)/2,k) if (n+k) is even; otherwise T(n,k)=0.
G.f.: (1-z^2)/(1-t*z-z^2) if offset is 1.
T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = 1, T(0,1) = 0. - Philippe Deléham, Feb 09 2012
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Feb 09 2012
From R. J. Mathar, Feb 04 2022: (Start)
Sum_{k=0..n} T(n,k)*k = A001629(n+1).
Sum_{k=0..n} T(n,k)*k^2 = 0,1,4,11,... = 2*A055243(n)-A099920(n+1).
Sum_{k=0..n} T(n,k)*k^3 = 0,1,8,29,88,236,... = 12*A055243(n) -6*A001629(n+2) +A001629(n+1)-6*(A001872(n)-2*A001872(n-1)). (End)

Extensions

Typo in name corrected (1(1-x^2) changed to 1/(1-x^2)) by Wolfdieter Lang, Nov 20 2010

A281056 T(n,k)=Number of nXk 0..1 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 6, 6, 0, 2, 34, 68, 29, 0, 6, 104, 239, 376, 122, 0, 13, 251, 618, 1022, 1492, 468, 0, 29, 535, 1403, 2452, 3416, 4988, 1686, 0, 60, 1076, 2828, 5400, 7803, 10112, 15028, 5807, 0, 122, 2090, 5482, 10570, 16875, 22106, 27635, 42252, 19338, 0
Offset: 1

Views

Author

R. H. Hardin, Jan 13 2017

Keywords

Comments

Table starts
.0.....0......0......1......2.......6......13......29......60......122......241
.0.....1......6.....34....104.....251.....535....1076....2090.....3956.....7353
.0.....6.....68....239....618....1403....2828....5482...10342....19136....34907
.0....29....376...1022...2452....5400...10570...19892...36616....66354...118926
.0...122...1492...3416...7803...16875...32370...59669..107693...191953...339219
.0...468...4988..10112..22106...46610...87995..159317..282552...495655...864369
.0..1686..15028..27635..58005..119205..221212..394884..689397..1191475..2050466
.0..5807..42252..71419.144283..288527..526340..926077.1596265..2721514..4625355
.0.19338.113076.177320.344972..671451.1201939.2084979.3549039..5982952.10051523
.0.62731.291660.426696.800225.1515524.2661939.4546633.7645715.12749511.21211441

Examples

			Some solutions for n=4 k=4
..0..0..1..0. .0..0..0..1. .0..1..0..1. .0..1..1..0. .0..1..0..1
..1..1..0..1. .0..1..0..1. .1..0..1..0. .0..1..0..1. .1..0..1..1
..0..1..1..0. .0..1..1..0. .1..0..0..1. .0..1..0..1. .1..0..0..1
..0..0..1..1. .0..1..0..1. .0..1..0..0. .1..0..1..1. .1..0..1..0
		

Crossrefs

Row 1 is A055243(n-4).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 9*a(n-1) -30*a(n-2) +45*a(n-3) -30*a(n-4) +9*a(n-5) -a(n-6)
k=3: a(n) = 5*a(n-1) -6*a(n-2) -4*a(n-3) +8*a(n-4) for n>6
k=4: [order 12] for n>14
k=5: [order 13] for n>16
k=6: [order 18] for n>21
k=7: [order 19] for n>23
Empirical for row n:
n=1: a(n) = 3*a(n-1) -5*a(n-3) +3*a(n-5) +a(n-6)
n=2: [order 8] for n>14
n=3: [same order 8] for n>15
n=4: [order 9] for n>17
n=5: [same order 9] for n>18
n=6: [same order 9] for n>19
n=7: [same order 9] for n>20

A210034 Triangle of coefficients of polynomials v(n,x) jointly generated with A210033; see the Formula section.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 7, 5, 2, 1, 12, 10, 6, 2, 1, 20, 20, 13, 7, 2, 1, 33, 38, 29, 16, 8, 2, 1, 54, 71, 60, 39, 19, 9, 2, 1, 88, 130, 122, 86, 50, 22, 10, 2, 1, 143, 235, 241, 187, 116, 62, 25, 11, 2, 1, 232, 420, 468, 392, 267, 150, 75, 28, 12, 2, 1, 376, 744, 894, 806
Offset: 1

Views

Author

Clark Kimberling, Mar 16 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
From Gus Wiseman, Jun 29 2025: (Start)
This appears to be the number of subsets of {1..n} with k>0 maximal anti-runs (sequences of consecutive elements increasing by more than 1). For example, the subset {1,2,4,5} has maximal anti-runs ((1),(2,4),(5)) so is counted under T(5,3). Row n = 5 counts the following:
{1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5}
{2} {2,3} {2,3,4} {2,3,4,5}
{3} {3,4} {3,4,5}
{4} {4,5} {1,2,3,5}
{5} {1,2,4} {1,2,4,5}
{1,3} {1,2,5} {1,3,4,5}
{1,4} {1,3,4}
{1,5} {1,4,5}
{2,4} {2,3,5}
{2,5} {2,4,5}
{3,5}
{1,3,5}
For runs instead of anti-runs we have A034839, with n A202064. For reversed partitions instead of subsets we have A268193. (End)

Examples

			First five rows:
  1
  2    1
  4    2    1
  7    5    2   1
  12   10   6   2   1
First three polynomials v(n,x): 1, 2 + x, 4 + 2*x + x^2.
		

Crossrefs

Column k = 1 is A000071.
Row sums are A000225.
Column k = 2 is A001629.
Column k = 3 is A055243.
The version including k = 0 is A384893.
A034839 counts subsets by number of maximal runs, see also A202023, A202064.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
A384877 gives lengths of maximal anti-runs of binary indices, firsts A384878.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210033 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210034 *)

Formula

u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A076791 Triangle a(n,k) giving number of binary sequences of length n containing k subsequences 00.

Original entry on oeis.org

1, 2, 3, 1, 5, 2, 1, 8, 5, 2, 1, 13, 10, 6, 2, 1, 21, 20, 13, 7, 2, 1, 34, 38, 29, 16, 8, 2, 1, 55, 71, 60, 39, 19, 9, 2, 1, 89, 130, 122, 86, 50, 22, 10, 2, 1, 144, 235, 241, 187, 116, 62, 25, 11, 2, 1, 233, 420, 468, 392, 267, 150, 75, 28, 12, 2, 1, 377, 744, 894, 806, 588, 363, 188, 89, 31, 13, 2, 1
Offset: 0

Views

Author

Roger Cuculière, Nov 16 2002

Keywords

Comments

The triangle of numbers of n-sequences of 0,1 with k subsequences of consecutive 01 is A034867 because this number is C(n+1,2*k+1). I have not yet found a formula for subsequences 00.
The problem is equivalent to one encountered by David W. Wilson, Dept of Geography, University of Southampton, UK, in his work on Markov models for rainfall disaggregation. He asked for the number of ways in which there can be k instances of adjacent rainy days in a period of n consecutive days. Representing a rainy day by 0 and a fine day by 1, the problem is equivalent to that solved by this sequence. - E. Keith Lloyd (ekl(AT)soton.ac.uk), Nov 29 2004
Row n (n>=1) contains n terms.
Triangle, with zeros omitted, given by (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
a(n-1,k) is also the number of permutations avoiding both 132 and 213 with k double descents, i.e., positions with w[i]>w[i+1]>w[i+2]. - Lara Pudwell, Dec 19 2018

Examples

			a(5,2) = 6 because the binary sequences of length 5 with 2 subsequences 00 are 10001, 11000, 01000, 00100, 00010, 00011.
Triangle begins
   1;
   2;
   3,  1;
   5,  2, 1;
   8,  5, 2, 1;
  13, 10, 6, 2, 1;
  ...
		

Crossrefs

Cf. a(n,1) = A001629, a(n,2) = A055243.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1,
          expand(b(n-1, 1)*x^l)+b(n-1, 0))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Sep 17 2019
  • Mathematica
    f[list_] := Select[list, #>0&]; nn=10; a=1/(1-y x); b= x/(1-y x) +1; c=1/(1-x); Map[f, CoefficientList[Series[c b/(1-(a x^2 c)), {x,0,nn}], {x,y}]]//Flatten (* Geoffrey Critzer, Mar 05 2012 *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A053538 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A076791 *)
    (* Clark Kimberling, Mar 08 2012 *)
    T[ n_, k_] := If[n<2, (n+1)*Boole[n > -1 && k == 0], T[n, k] = T[n-1, k] + T[n-1, k-1] + T[n-2, k] - T[n-2, k-1] ]; (* Michael Somos, Sep 21 2024 *)
  • PARI
    {T(n, k) = if(n<2, (n+1)*(n > -1 && k == 0), T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-2, k-1) )}; /* Michael Somos, Sep 21 2024 */

Formula

Recurrence: a(n, k) = (a(n-1, k) + a(n-2, k)) + (a(n-3, k-1) + a(n-4, k-2) + ... + a(n-k-2, 0)).
Special values: a(n, 0) = Fibonacci(n+1); a(n, n-1) = 1 for n >= 2; a(n, n-2) = 2 for n >= 3; a(n, n-3) = n + 1 for n >= 4, etc.
a(n, n-4) = 3*n - 5 for n >= 5, a(n, n-5) = (n^2 + 5*n - 26)/2 for n >= 6, a(n, n-6) = 2*n^2 - 8*n - 4, for n >= 7 etc.
Recurrence relation: a(n+1, k) = a(n, k) + a(n-1, k) + a(n, k-1) - a(n-1, k-1) for k >= 1, n >= 1.
Generating function: a(n, k) is coefficient of x^n in ((x^(k + 1))*((1 - x)^(k - 1)))/((1 - x - x^2)^(k + 1)) for k >= 1. - E. Keith Lloyd (ekl(AT)soton.ac.uk), Nov 29 2004
G.f.: (1 + (1 - t)*x)/(1 - (1 + t)*x - (1 - t)*x^2). [Carlitz-Scoville] - Emeric Deutsch, May 19 2006
A076791 is jointly generated with A053538 as an array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1)*x and v(n,x) = u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 08 2012

Extensions

More terms from E. Keith Lloyd (ekl(AT)soton.ac.uk), Nov 29 2004

A129707 Number of inversions in all Fibonacci binary words of length n.

Original entry on oeis.org

0, 0, 1, 4, 12, 31, 73, 162, 344, 707, 1416, 2778, 5358, 10188, 19139, 35582, 65556, 119825, 217487, 392286, 703618, 1255669, 2230608, 3946020, 6954060, 12212280, 21377365, 37309288, 64935132, 112726771, 195224773, 337343034, 581700476
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

A Fibonacci binary word is a binary word having no 00 subword.

Examples

			a(3)=4 because the Fibonacci words 110,111,101,010,011 have a total of 2 + 0 + 1 + 1 + 0 = 4 inversions.
		

Crossrefs

Cf. A129706.
Cf. A055243.

Programs

  • Maple
    with(combinat): a[0]:=0: a[1]:=0: a[2]:=1: a[3]:=4: for n from 4 to 40 do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]-a[n-4]+fibonacci(n) od: seq(a[n],n=0..40);
  • Mathematica
    CoefficientList[Series[x^2*(1 + x)/(1 - x - x^2)^3, {x,0,50}], x] (* G. C. Greubel, Mar 04 2017 *)
  • Maxima
    a(n) = sum(k*(k+1)*binomial(k,n-k-1),k,floor((n-1)/2),n-1)/2; /* Vladimir Kruchinin, Sep 17 2020 */
  • PARI
    x='x+O('x^50); concat([0,0], Vec(x^2*(1 + x)/(1 - x - x^2)^3)) \\ G. C. Greubel, Mar 04 2017
    

Formula

a(n) = Sum_{k>=0} k*A129706(n,k).
G.f.: z^2*(1+z)/(1-z-z^2)^3.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) + F(n), a(0)=a(1)=0, a(2)=1, a(3)=4.
a(n-3) = ((5*n^2 - 37*n + 50)*F(n-1) + 4*(n-1)*F(n))/50 = (-1)^n*A055243(-n). - Peter Bala, Oct 25 2007
a(n) = A001628(n-3) + A001628(n-2). - R. J. Mathar, Dec 07 2011
a(n+1) = A123585(n+2,n). - Philippe Deléham, Dec 18 2011
a(n) = Sum_{k=floor((n-1)/2)..n-1} k*(k+1)/2*C(k,n-k-1). - Vladimir Kruchinin, Sep 17 2020

A280554 T(n,k)=Number of nXk 0..1 arrays with no element equal to more than one of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 9, 9, 1, 2, 34, 50, 34, 2, 6, 87, 144, 144, 87, 6, 13, 194, 325, 382, 325, 194, 13, 29, 400, 670, 832, 832, 670, 400, 29, 60, 790, 1316, 1666, 1764, 1666, 1316, 790, 60, 122, 1511, 2502, 3182, 3438, 3438, 3182, 2502, 1511, 122, 241, 2830, 4654
Offset: 1

Views

Author

R. H. Hardin, Jan 05 2017

Keywords

Comments

Table starts
...0....0....0.....1.....2.....6....13.....29.....60....122....241....468
...0....0....9....34....87...194...400....790...1511...2830...5213...9484
...0....9...50...144...325...670..1316...2502...4654...8521..15412..27612
...1...34..144...382...832..1666..3182...5886..10680..19122..33920..59754
...2...87..325...832..1764..3438..6386..11506..20389..35757..62317.108150
...6..194..670..1666..3438..6502.11697..20440..35226..60300.102974.175746
..13..400.1316..3182..6386.11697.20334..34360..57389..95548.159360.266756
..29..790.2502..5886.11506.20440.34360..56102..90614.146264.237392.388378
..60.1511.4654.10680.20389.35226.57389..90614.141398.220709.347310.553046
.122.2830.8521.19122.35757.60300.95548.146264.220709.332810.506359.781682

Examples

			Some solutions for n=4 k=4
..0..1..0..1. .0..1..0..0. .0..1..1..0. .0..1..0..1. .0..1..0..1
..1..0..1..0. .0..1..0..1. .1..1..0..1. .0..1..0..1. .1..0..1..1
..0..1..1..0. .1..0..1..0. .0..0..1..0. .1..0..1..0. .0..1..0..0
..1..0..1..0. .0..0..1..0. .1..1..0..1. .1..1..0..0. .0..1..0..1
		

Crossrefs

Column 1 is A055243(n-4).
Column 2 is A279128.

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) -5*a(n-3) +3*a(n-5) +a(n-6)
k=2: a(n) = 5*a(n-1) -7*a(n-2) -2*a(n-3) +10*a(n-4) -2*a(n-5) -5*a(n-6) +a(n-7) +a(n-8) for n>9
k=3: a(n) = 5*a(n-1) -7*a(n-2) -2*a(n-3) +10*a(n-4) -2*a(n-5) -5*a(n-6) +a(n-7) +a(n-8) for n>10
k=4: a(n) = 6*a(n-1) -12*a(n-2) +5*a(n-3) +12*a(n-4) -12*a(n-5) -3*a(n-6) +6*a(n-7) -a(n-9) for n>11
k=5: a(n) = 6*a(n-1) -12*a(n-2) +5*a(n-3) +12*a(n-4) -12*a(n-5) -3*a(n-6) +6*a(n-7) -a(n-9) for n>12
k=6: a(n) = 6*a(n-1) -12*a(n-2) +5*a(n-3) +12*a(n-4) -12*a(n-5) -3*a(n-6) +6*a(n-7) -a(n-9) for n>12
k=7: a(n) = 6*a(n-1) -12*a(n-2) +5*a(n-3) +12*a(n-4) -12*a(n-5) -3*a(n-6) +6*a(n-7) -a(n-9) for n>12

A136531 Coefficients of polynomials B(x,n) = ((1+a+b)*x - c)*B(x,n-1) - a*b*B(x,n-2) where B(x,0) = 1, B(x,1) = x, a=-b, b=1, c=1.

Original entry on oeis.org

1, 0, 1, 1, -1, 1, -1, 3, -2, 1, 2, -5, 6, -3, 1, -3, 10, -13, 10, -4, 1, 5, -18, 29, -26, 15, -5, 1, -8, 33, -60, 65, -45, 21, -6, 1, 13, -59, 122, -151, 125, -71, 28, -7, 1, -21, 105, -241, 338, -321, 217, -105, 36, -8, 1, 34, -185, 468, -730, 784, -609, 350, -148, 45, -9, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 23 2008

Keywords

Examples

			Triangle begins
        k=0  k=1  k=2  k=3  k=4  k=5  k=6
  n=0:   1;
  n=1:   0,   1;
  n=2:   1,  -1,   1;
  n=3:  -1,   3,  -2,   1;
  n=4:   2,  -5,   6,  -3,   1;
  n=5:  -3,  10, -13,  10,  -4,   1;
  n=6:   5, -18,  29, -26,  15,  -5,   1;
		

Crossrefs

Programs

  • Magma
    C := ComplexField(); // T = A136531
    T:= func< n,k | k eq n select 1 else Round(i^(k-n-1)*(i*Evaluate(GegenbauerPolynomial(n-k, k+1), 1/(2*i)) - Evaluate(GegenbauerPolynomial(n-k-1, k+1), 1/(2*i)))) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 26 2022
    
  • Mathematica
    (* First program *)
    a = -b; c = 1; b = 1;
    B[x_, n_]:= B[x, n]= If[n<2, x^n, ((1+a+b)*x -c)*B[x, n-1] -a*b*B[x, n-2]];
    Table[CoefficientList[B[x,n], x], {n,0,10}]//Flatten
    (* Second program *)
    B[x_, n_]:= (-1)^n*(Fibonacci[n+1, 1-x] - Fibonacci[n, 1-x]);
    Table[CoefficientList[B[x, n], x], {n,0,16}]//Flatten (* G. C. Greubel, Sep 22 2022 *)
  • SageMath
    def T(n,k): # T = A136531
        if k==n: return 1
        else: return i^(k-n-1)*(i*gegenbauer(n-k, k+1, 1/(2*i)) - gegenbauer(n-k-1, k+1, 1/(2*i)))
    flatten([[T(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Sep 26 2022

Formula

G.f.: (1+y) / (1 + (1-x)*y - y^2). - Kevin Ryde, Sep 21 2022
From G. C. Greubel, Sep 22 2022: (Start)
T(n, k) = coefficients of i^n*(ChebyshevU(n, (x-1)/(2*i)) - i*ChebyshevU(n-1, (x-1)/(2*i))).
T(n, k) = coefficients of (-1)^n*( Fibonacci(n+1, 1-x) - Fibonacci(n, 1-x) ).
T(n, k) = i^(k-n-1)*(i*GegenbauerC(n-k, k+1, 1/(2*i)) - GegenbauerC(n-k-1, k+1, 1/(2*i))).
T(n, 0) = Fibonacci(1-n) = (-1)^n*A212804(n) = A039834(n-1).
T(n, 1) = (-1)^(n-1)*A010049(n), n >= 1.
T(n, 2) = (-1)^n*A055243(n-2), n >= 2.
T(n, n) = 1.
T(n, n-1) = -(n-1).
T(n, n-2) = A000217(n-1), n >= 2.
T(n, n-3) = -A008728(n-3), n >= 3.
Sum_{k=0..n-2} T(n, k) = A000027(n-1), n >= 2.
Sum_{k=0..n} T(n, k) = 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A151575(n) = (-1)^n*A078008(n). (End)

Extensions

Offset corrected by Kevin Ryde, Sep 21 2022
Showing 1-8 of 8 results.