cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129803 Triangular numbers that are the sum of three consecutive triangular numbers.

Original entry on oeis.org

10, 136, 1891, 26335, 366796, 5108806, 71156485, 991081981, 13803991246, 192264795460, 2677903145191, 37298379237211, 519499406175760, 7235693307223426, 100780206894952201, 1403687203222107385, 19550840638214551186, 272308081731781609216
Offset: 1

Views

Author

Zak Seidov, May 18 2007

Keywords

Comments

Indices m: 4, 16, 61, 229, 856, 3196, 11929, with recurrence m(i) = 5(m(i-1) - m(i-2)) + m(i-3) (see A133161).
If first term is omitted, same sequence as A128862. - R. J. Mathar, Jun 13 2008

Examples

			With tr(k) = k(k+1)/2 = A000217(k):
10 = tr(4) = tr(1) + tr(2) + tr(3) = 1 + 3 + 6,
136 = tr(16) = tr(8) + tr(9) + tr(10) = 36 + 45 + 55,
1891 = tr(61) = tr(34) + tr(35) + tr(36) = 595 + 630 + 666,
26335 = tr(229) = tr(131) + tr(132) + tr(133) = 8646 + 8778 + 8911,
366796 = tr(856) = tr(493) + tr(494) + tr(495) = 121771 + 122265 + 122760.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{15,-15,1},{10,136,1891},20] (* Harvey P. Dale, Oct 31 2024 *)
  • PARI
    Vec((10*z - 14*z^2 + z^3)/((1-z)*(1 - 14*z + z^2)) + O(z^30)) \\ Michel Marcus, Sep 16 2015

Formula

a(n) = tr(m) = tr(k) + tr(k+1) + tr(k+2), where tr(k) = k(k+1)/2 = A000217(k).
From Richard Choulet, Oct 06 2007: (Start)
a(n+2) = 14*a(n+1) - a(n) - 3.
a(n+1) = 7*a(n) - 3/2 + 1/2*sqrt(192*a(n)^2 - 96*a(n) - 15).
G.f.: x*(10-14*x+x^2) / ((1-x)*(1-14*x+x^2)). (End)
a(n) = (4-3*(7-4*sqrt(3))^n*(-2+sqrt(3))+3*(2+sqrt(3))*(7+4*sqrt(3))^n)/16. - Colin Barker, Mar 05 2016