A129803 Triangular numbers that are the sum of three consecutive triangular numbers.
10, 136, 1891, 26335, 366796, 5108806, 71156485, 991081981, 13803991246, 192264795460, 2677903145191, 37298379237211, 519499406175760, 7235693307223426, 100780206894952201, 1403687203222107385, 19550840638214551186, 272308081731781609216
Offset: 1
Examples
With tr(k) = k(k+1)/2 = A000217(k): 10 = tr(4) = tr(1) + tr(2) + tr(3) = 1 + 3 + 6, 136 = tr(16) = tr(8) + tr(9) + tr(10) = 36 + 45 + 55, 1891 = tr(61) = tr(34) + tr(35) + tr(36) = 595 + 630 + 666, 26335 = tr(229) = tr(131) + tr(132) + tr(133) = 8646 + 8778 + 8911, 366796 = tr(856) = tr(493) + tr(494) + tr(495) = 121771 + 122265 + 122760.
Links
- Colin Barker, Table of n, a(n) for n = 1..850
- Index entries for linear recurrences with constant coefficients, signature (15, -15, 1).
Programs
-
Mathematica
LinearRecurrence[{15,-15,1},{10,136,1891},20] (* Harvey P. Dale, Oct 31 2024 *)
-
PARI
Vec((10*z - 14*z^2 + z^3)/((1-z)*(1 - 14*z + z^2)) + O(z^30)) \\ Michel Marcus, Sep 16 2015
Formula
a(n) = tr(m) = tr(k) + tr(k+1) + tr(k+2), where tr(k) = k(k+1)/2 = A000217(k).
From Richard Choulet, Oct 06 2007: (Start)
a(n+2) = 14*a(n+1) - a(n) - 3.
a(n+1) = 7*a(n) - 3/2 + 1/2*sqrt(192*a(n)^2 - 96*a(n) - 15).
G.f.: x*(10-14*x+x^2) / ((1-x)*(1-14*x+x^2)). (End)
a(n) = (4-3*(7-4*sqrt(3))^n*(-2+sqrt(3))+3*(2+sqrt(3))*(7+4*sqrt(3))^n)/16. - Colin Barker, Mar 05 2016
Comments