cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A033308 Decimal expansion of Copeland-Erdős constant: concatenate primes.

Original entry on oeis.org

2, 3, 5, 7, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 2, 9, 3, 1, 3, 7, 4, 1, 4, 3, 4, 7, 5, 3, 5, 9, 6, 1, 6, 7, 7, 1, 7, 3, 7, 9, 8, 3, 8, 9, 9, 7, 1, 0, 1, 1, 0, 3, 1, 0, 7, 1, 0, 9, 1, 1, 3, 1, 2, 7, 1, 3, 1, 1, 3, 7, 1, 3, 9, 1, 4, 9, 1, 5, 1, 1, 5, 7, 1, 6, 3, 1, 6, 7, 1, 7, 3, 1, 7, 9, 1, 8, 1, 1, 9, 1, 1
Offset: 0

Views

Author

Keywords

Comments

The number .23571113171923.... was proved normal in base 10 by Copeland and Erdős but is not known to be normal in other bases. - Jeffrey Shallit, Mar 14 2008
Could be read (with indices 1, 2, ...) as irregular table whose n-th row lists the A097944(n) digits of the n-th prime A000040(n). - M. F. Hasler, Oct 25 2019
Named after the American mathematician Arthur Herbert Copeland (1898-1970) and the Hungarian mathematician Paul Erdős (1913-1996). - Amiram Eldar, May 29 2021
This constant is irrational but it is not (yet) known to be transcendental. - Charles R Greathouse IV, Feb 03 2025

Examples

			0.235711131719232931374143475359616771737983899710110310710911312...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.9, p. 442.
  • Glyn Harman, One hundred years of normal numbers, in M. A. Bennett et al., eds., Number Theory for the Millennium, II (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, pp. 149-166.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.

Crossrefs

Cf. A030168 (continued fraction), A072754 (numerators of convergents), A072755 (denominators of convergents).
Cf. A000040 (primes), A097944 (row lengths if this is read as table), A228355 (digits of the primes listed in reversed order).
Cf. A033307 (Champernowne constant: analog for positive integers instead of primes), A007376 (digits of the integers, considered as infinite word or table), A066716 (decimals of the binary Champernowne constant).
Cf. A066747 and A191232: binary Copeland-Erdős constant: decimals and binary digits.
See also A338072.

Programs

  • Haskell
    a033308 n = a033308_list !! (n-1)
    a033308_list = concatMap (map (read . return) . show) a000040_list :: [Int]
    -- Reinhard Zumkeller, Mar 03 2014
  • Mathematica
    N[Sum[Prime[n]*10^-(n + Sum[Floor[Log[10, Prime[k]]], {k, 1, n}]), {n, 1, 40}], 100] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *)
    N[Sum[Prime@n*10^-(n + Sum[Floor[Log[10, Prime@k]], {k, n}]), {n, 45}], 106] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006 *)
    IntegerDigits //@ Prime@Range@45 // Flatten (* Robert G. Wilson v Oct 03 2006 *)
  • PARI
    default(realprecision, 2080); x=0.0; m=-1; forprime (p=2, 4000, n=1+floor(log(p)/log(10)); x=p+x*10^n; m+=n; ); x=x/10^m; for (n=0, 2000, d=floor(x); x=(x-d)*10; write("b033308.txt", n, " ", d)); \\ Harry J. Smith, Apr 30 2009
    
  • PARI
    concat( apply( {row(n)=digits(prime(n))},  [1..99] )) \\ Yields this sequence; row(n) then yields the digits of prime(n) = n-th row of the table, cf. comments. - M. F. Hasler, Oct 25 2019
    

Formula

Equals Sum_{n>=1} prime(n)*10^(-A068670(n)). - Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 12 2006
Equals Sum_{i>=1} (p_i * 10^(-(Sum_{j=1..i} 1 + floor(log_10(p_j))) )) or Sum_{i>=1} (p_i * 10^(-( i + Sum_{j=1..i} floor(log_10(p_j))) )) or Sum_{i>=1} (p_i * 10^(-( Sum_{j=1..i} ceiling(log_10(1 + p_j))) )). - Daniel Forgues, Mar 26-28 2014

A154513 The prime(n)-th digit of the concatenated composites.

Original entry on oeis.org

6, 8, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 1, 4, 6, 0, 1, 1, 1, 7, 1, 1, 1, 3, 8, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 8, 1, 8, 1, 0, 1, 7, 0, 1, 5, 1, 1, 2, 5, 8, 2, 2, 5, 2, 9, 2, 4, 2, 8, 0, 2, 2, 8, 2, 1, 2, 2, 2, 2, 6, 2, 2, 2, 5, 2, 5, 2, 2, 2, 5
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 11 2009

Keywords

Comments

The concatenated composites are A129808, the initial 1 removed.

Crossrefs

Programs

  • Maple
    a129808 := [1 ] : for n from 4 to 400 do if not isprime(n) then a129808 := [op(a129808), op(ListTools[Reverse](convert(n,base,10))) ] ; fi; od:
    for n from 1 do p := ithprime(n) ; printf("%d,", op(p+1,a129808) ) ; od: # R. J. Mathar, Aug 03 2009
  • Mathematica
    nn=700;With[{c=Flatten[IntegerDigits/@Complement[Range[4,nn],Prime[Range[ PrimePi[nn]]]]]}, Flatten[Table[Take[c,{n,n}],{n,Prime[Range[ PrimePi[ nn]]]}]]] (* Harvey P. Dale, Nov 22 2013 *)

Formula

a(n) = A129808(prime(n)+1).

Extensions

Edited and corrected by R. J. Mathar, Aug 03 2009

A154520 The prime(n)-th digit of the concatenated nonprimes.

Original entry on oeis.org

1, 4, 8, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 3, 4, 1, 4, 4, 4, 5, 1, 1, 5, 1, 6, 1, 6, 1, 7, 1, 1, 8, 1, 8, 8, 1, 1, 1, 0, 0, 2, 0, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 4, 2, 4, 4, 5, 2, 2, 2, 6, 7, 7, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 11 2009

Keywords

Comments

The concatenated nonprimes A141468 are A129808 with an initial 0.

Crossrefs

Programs

  • Maple
    a129808 := [1] : for n from 4 to 400 do if not isprime(n) then a129808 := [op(a129808), op(ListTools[Reverse](convert(n,base,10))) ] ; fi; od:
    for n from 1 do p := ithprime(n) ; printf("%d,", op(p-1,a129808) ) ; od: # R. J. Mathar, Aug 03 2009

Formula

a(n) = A129808(prime(n)-1) .

Extensions

Edited and extended by R. J. Mathar, Aug 03 2009

A077305 Partition the concatenation 468910121415161820212224252627283032... of composite numbers into successive strings such that the n-th string is a multiple of prime(n) and > prime(n).

Original entry on oeis.org

4, 6, 8910, 121415, 161820212224, 25262728303233343, 536383940424445464849505152, 5455565, 758606263, 6465666, 8697072747576777880818, 2848586878890919293949, 59698991001021041051061081101111121141151161171181191201
Offset: 1

Views

Author

Amarnath Murthy, Nov 03 2002

Keywords

Examples

			a(4) = 121415 is a multiple of prime(4) = 7.
		

Crossrefs

Extensions

More terms from Franklin T. Adams-Watters, May 30 2006

A129112 Decimal expansion of constant equal to concatenated semiprimes.

Original entry on oeis.org

4, 6, 9, 1, 0, 1, 4, 1, 5, 2, 1, 2, 2, 2, 5, 2, 6, 3, 3, 3, 4, 3, 5, 3, 8, 3, 9, 4, 6, 4, 9, 5, 1, 5, 5, 5, 7, 5, 8, 6, 2, 6, 5, 6, 9, 7, 4, 7, 7, 8, 2, 8, 5, 8, 6, 8, 7, 9, 1, 9, 3, 9, 4, 9, 5, 1, 0, 6, 1, 1, 1, 1, 1, 5, 1, 1, 8, 1, 1, 9, 1, 2, 1, 1, 2, 2, 1, 2, 3, 1, 2, 9
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2007

Keywords

Comments

Is this, as Copeland and Erdos (1946) showed for the Copeland-Erdos constant, a normal number in base 10? I conjecture that it is, despite the fact that the density of odd semiprimes exceeds the density of even semiprimes. What are the first few digits of the continued fraction of this constant? What are the positions of the first occurrence of n in the continued fraction? What are the incrementally largest terms and at what positions do they occur?
Coincides up to n=15 with concatenation of A046368. - M. F. Hasler, Oct 01 2007
Indeed, a theorem of Copeland & Erdős proves that this constant is 10-normal. - Charles R Greathouse IV, Feb 06 2015

Examples

			4.691014152122252633343538394649515557586265...
		

Crossrefs

Cf. A001358, A019518, A030168, A033308 = decimal expansion of Copeland-Erdos constant: concatenate primes, A033309-A033311, A129808.

Programs

  • Mathematica
    Flatten[IntegerDigits/@Select[Range[200],PrimeOmega[#]==2&]] (* Harvey P. Dale, Jan 17 2012 *)
  • PARI
    print1(4); for(n=6,129, if(bigomega(n)==2, d=digits(n); for(i=1,#d, print1(", "d[i])))) \\ Charles R Greathouse IV, Feb 06 2015

A154521 The prime(n)-th digit of the concatenated positive nonprimes.

Original entry on oeis.org

4, 6, 9, 0, 4, 5, 8, 0, 2, 6, 7, 2, 4, 5, 8, 2, 6, 8, 1, 4, 5, 8, 2, 5, 0, 4, 5, 7, 8, 1, 0, 2, 5, 6, 2, 0, 0, 1, 1, 4, 6, 1, 0, 2, 2, 2, 2, 3, 4, 3, 6, 0, 4, 4, 6, 8, 2, 5, 5, 6, 5, 1, 6, 9, 7, 1, 7, 8, 4, 8, 6, 8, 9, 9, 9, 0, 2, 0, 6, 0, 3, 1, 7, 1, 2, 1, 4, 2, 0, 3, 2, 7, 4, 3, 4, 7, 9, 4, 5, 6, 6, 8, 2, 4, 7
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 11 2009

Keywords

Comments

The digits of A129808 at prime indices.

Crossrefs

Programs

  • Maple
    a129808 := [1] : for n from 4 to 400 do if not isprime(n) then a129808 := [op(a129808), op(ListTools[Reverse](convert(n,base,10))) ] ; fi; od:
    for n from 1 do p := ithprime(n) ; printf("%d,", op(p,a129808) ) ; od: # R. J. Mathar, Aug 03 2009

Formula

a(n) = A129808(prime(n)) .

Extensions

Edited and corrected by R. J. Mathar, Aug 03 2009
Showing 1-6 of 6 results.