A129862 Triangle read by rows: T(n,k) is the coefficient [x^k] of (-1)^n times the characteristic polynomial of the Cartan matrix for the root system D_n.
1, 2, -1, 4, -4, 1, 4, -10, 6, -1, 4, -20, 21, -8, 1, 4, -34, 56, -36, 10, -1, 4, -52, 125, -120, 55, -12, 1, 4, -74, 246, -329, 220, -78, 14, -1, 4, -100, 441, -784, 714, -364, 105, -16, 1, 4, -130, 736, -1680, 1992, -1364, 560, -136, 18, -1, 4, -164, 1161, -3312, 4950, -4356, 2379, -816, 171, -20, 1
Offset: 0
Examples
Triangle begins: 1; 2, -1; 4, -4, 1; 4, -10, 6, -1; 4, -20, 21, -8, 1; 4, -34, 56, -36, 10, -1; 4, -52, 125, -120, 55, -12, 1; 4, -74, 246, -329, 220, -78, 14, -1; 4, -100, 441, -784, 714, -364, 105, -16, 1; 4, -130, 736, -1680, 1992, -1364, 560, -136, 18, -1; 4, -164, 1161, -3312, 4950, -4356, 2379, -816, 171, -20, 1;
References
- R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 60.
- Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S. :ISBN 0-8218-2848-7, 1978, p. 464.
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Maple
A129862 := proc(n,k) M := Matrix(n,n); for r from 1 to n do for c from 1 to n do if r = c then M[r,c] := 2; elif abs(r-c)= 1 then M[r,c] := -1; else M[r,c] := 0 ; end if; end do: end do: if n-2 >= 1 then M[n,n-2] := -1 ; M[n-2,n] := -1 ; end if; if n-1 >= 1 then M[n-1,n] := 0 ; M[n,n-1] := 0 ; end if; LinearAlgebra[CharacteristicPolynomial](M,x) ; (-1)^n*coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, May 31 2014
-
Mathematica
(* First program *) t[n_, m_, d_]:= If[n==m, 2, If[(m==d && n==d-2) || (n==d && m==d-2), -1, If[(n==m- 1 || n==m+1) && n<=d-1 && m<=d-1, -1, 0]]]; M[d_]:= Table[t[n,m,d], {n,1,d}, {m,1,d}]; p[n_, x_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]]; T[n_, k_]:= SeriesCoefficient[p[n, x], {x, 0, k}]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 21 2021 *) (* Second program *) Join[{{1}, {2, -1}}, CoefficientList[Table[(2-x)*LucasL[2(n-1), Sqrt[-x]], {n, 2, 10}], x]]//Flatten (* Eric W. Weisstein, Apr 04 2018 *)
-
Sage
def p(n,x): return 2*(2-x)*sum( ((n-1)/(2*n-k-2))*binomial(2*n-k-2, k)*(-x)^(n-k-1) for k in (0..n-1) ) def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False) [1,2,-1]+flatten([T(n) for n in (2..12)]) # G. C. Greubel, Jun 21 2021
Formula
T(n, k) = coefficients of ( (2-x)*Lucas(2*n-2, i*sqrt(x)) ) with T(0, 0) = 1, T(1, 0) = 2 and T(1, 1) = -1. - G. C. Greubel, Jun 21 2021
Comments