cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129863 Sums of three consecutive pentagonal numbers.

Original entry on oeis.org

6, 18, 39, 69, 108, 156, 213, 279, 354, 438, 531, 633, 744, 864, 993, 1131, 1278, 1434, 1599, 1773, 1956, 2148, 2349, 2559, 2778, 3006, 3243, 3489, 3744, 4008, 4281, 4563, 4854, 5154, 5463, 5781, 6108, 6444, 6789, 7143, 7506, 7878, 8259, 8649, 9048, 9456, 9873
Offset: 0

Views

Author

Jonathan Vos Post, May 23 2007, May 24 2007

Keywords

Comments

Arises in pentagonal number analog to A129803, Triangular numbers that are the sum of three consecutive triangular numbers. What are the pentagonal numbers which are the sum of three consecutive pentagonal numbers?

Examples

			a(0) = 6 = A000326(0) + A000326(1) + A000326(2) = 0 + 1 + 5.
a(1) = 18 = A000326(1) + A000326(2) + A000326(3) = 1 + 5 + 12.
		

Crossrefs

Programs

  • Magma
    [(9/2)*(n^2)+(15/2)*n+6: n in [0..50]]; // Vincenzo Librandi, Aug 16 2017
  • Mathematica
    Table[(3/2)*(4 + 5*n + 3*n^2), {n, 0, 100}] (* Stefan Steinerberger, May 27 2007 *)
    CoefficientList[Series[3 (2 + x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 16 2017 *)
    Total/@Partition[PolygonalNumber[5,Range[0,50]],3,1] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{6,18,39},50] (* Harvey P. Dale, Nov 22 2018 *)
  • PARI
    a(n)=n*(9*n+15)/2+6 \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

a(n) = P(n) + P(n+1) + P(n+2) where P(n) = A000326(n) = n*(3*n-1)/2.
a(n) = (9/2)*(n^2) + (15/2)*n + 6.
a(n) = (3*n^2 + 5*n + 4)*(3/2). - Stefan Steinerberger, May 27 2007
G.f.: 3*(2+x^2)/(1-x)^3. - Colin Barker, Feb 13 2012
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: 3*exp(x)*(3*x^2 + 8*x + 4)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Offset corrected by Eric Rowland, Aug 15 2017