A129863 Sums of three consecutive pentagonal numbers.
6, 18, 39, 69, 108, 156, 213, 279, 354, 438, 531, 633, 744, 864, 993, 1131, 1278, 1434, 1599, 1773, 1956, 2148, 2349, 2559, 2778, 3006, 3243, 3489, 3744, 4008, 4281, 4563, 4854, 5154, 5463, 5781, 6108, 6444, 6789, 7143, 7506, 7878, 8259, 8649, 9048, 9456, 9873
Offset: 0
Examples
a(0) = 6 = A000326(0) + A000326(1) + A000326(2) = 0 + 1 + 5. a(1) = 18 = A000326(1) + A000326(2) + A000326(3) = 1 + 5 + 12.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(9/2)*(n^2)+(15/2)*n+6: n in [0..50]]; // Vincenzo Librandi, Aug 16 2017
-
Mathematica
Table[(3/2)*(4 + 5*n + 3*n^2), {n, 0, 100}] (* Stefan Steinerberger, May 27 2007 *) CoefficientList[Series[3 (2 + x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 16 2017 *) Total/@Partition[PolygonalNumber[5,Range[0,50]],3,1] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{6,18,39},50] (* Harvey P. Dale, Nov 22 2018 *)
-
PARI
a(n)=n*(9*n+15)/2+6 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = P(n) + P(n+1) + P(n+2) where P(n) = A000326(n) = n*(3*n-1)/2.
a(n) = (9/2)*(n^2) + (15/2)*n + 6.
a(n) = (3*n^2 + 5*n + 4)*(3/2). - Stefan Steinerberger, May 27 2007
G.f.: 3*(2+x^2)/(1-x)^3. - Colin Barker, Feb 13 2012
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: 3*exp(x)*(3*x^2 + 8*x + 4)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Extensions
Offset corrected by Eric Rowland, Aug 15 2017
Comments