A129993 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x+199)^2 = y^2.
0, 21, 504, 597, 704, 3441, 3980, 4601, 20540, 23681, 27300, 120197, 138504, 159597, 701040, 807741, 930680, 4086441, 4708340, 5424881, 23818004, 27442697, 31619004, 138821981, 159948240, 184289541, 809114280, 932247141, 1074118640
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
Crossrefs
Programs
-
Magma
I:=[0,21,504,597,704,3441,3980]; [n le 7 select I[n] else Self(n-1) + 6*Self(n-3) - 6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..50]]; // G. C. Greubel, Mar 31 2018
-
Mathematica
LinearRecurrence[{1,0,6,-6,0,-1,1},{0,21,504,597,704,3441,3980},30] (* Harvey P. Dale, Jun 03 2012 *)
-
PARI
{forstep(n=0, 500000000, [1, 3], if(issquare(2*n^2+398*n+39601), print1(n, ",")))};
Formula
a(n) = 6*a(n-3) - a(n-6) + 398 for n > 6; a(1)=0, a(2)=21, a(3)=504, a(4)=597, a(5)=704, a(6)=3441.
G.f.: x*(21+483*x+93*x^2-19*x^3-161*x^4-19*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 199*A001652(k) for k >= 0.
a(1)=0, a(2)=21, a(3)=504, a(4)=597, a(5)=704, a(6)=3441, a(7)=3980, a(n)=a(n-1)+6*a(n-3)-6*a(n-4)-a(n-6)+a(n-7). - Harvey P. Dale, Jun 03 2012
Extensions
Edited and two terms added by Klaus Brockhaus, Apr 14 2009
Comments